1064 nm Dispersive Raman Microspectroscopy and Optical Trapping of Pharmaceutical Aerosols

被引:18
|
作者
Gallimore, Peter J. [1 ]
Davidson, Nick M. [2 ]
Kalberer, Markus [1 ]
Pope, Francis D. [2 ]
Ward, Andrew D. [3 ]
机构
[1] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[2] Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, W Midlands, England
[3] Rutherford Appleton Lab, Res Complex Harwell, Cent Laser Facil, Didcot OX11 0FA, Oxon, England
基金
英国科学技术设施理事会; 欧洲研究理事会;
关键词
METERED-DOSE INHALERS; SPECTROSCOPY; PARTICLES; TWEEZERS; CELLS; POLYMORPHS; SPECTRA; PMDI;
D O I
10.1021/acs.analchem.8b00817
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Raman spectroscopy is a powerful tool for investigating chemical composition. Coupling Raman spectroscopy with optical microscopy (Raman microspectroscopy) and optical trapping (Raman tweezers) allows microscopic length scales and, hence, femtolitre volumes to be probed. Raman microspectroscopy typically uses UV/visible excitation lasers, but many samples, including organic molecules and complex tissue samples, fluoresce strongly at these wavelengths. Here we report the development and application of dispersive Raman microspectroscopy designed around a near-infrared continuous wave 1064 nm excitation light source. We analyze microparticles (1-5 pm diameter) composed of polystyrene latex and from three real-world pressurized metered dose inhalers (pMDIs) used in the treatment of asthma: salmeterol xinafoate (Serevent), salbutamol sulfate (Salamol), and ciclesonide (Alvesco). For the first time, single particles are captured, optically levitated, and analyzed using the same 1064 nm laser, which permits a convenient nondestructive chemical analysis of the true aerosol phase. We show that particles exhibiting overwhelming fluorescence using a visible laser (514.5 nm) can be successfully analyzed with 1064 nm excitation, irrespective of sample composition and irradiation time. Spectra are acquired rapidly (1-5 min) with a wavelength resolution of 2 nm over a wide wavenumber range (500-3100 cm(-1)). This is despite the microscopic sample size and low Raman scattering efficiency at 1064 nm. Spectra of individual pMDI particles compare well to bulk samples, and the Serevent pMDI delivers the thermodynamically preferred crystal form of salmeterol xinafoate. 1064 nm dispersive Raman microspectroscopy is a promising technique that could see diverse applications for samples where fluorescence-free characterization is required with high spatial resolution.
引用
收藏
页码:8838 / 8844
页数:7
相关论文
共 50 条
  • [31] Blueberry juices: a rapid multi-analysis of quality indicators by means of dispersive Raman spectroscopy excited at 1064 nm
    Ciaccheri, L.
    Yuan, T.
    Zhang, S.
    Mencaglia, A. A.
    Trono, C.
    Yuan, L.
    Mignani, A. G.
    2017 25TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS (OFS), 2017, 10323
  • [32] Raman Spectroscopy and Optical Trapping of 20 nm Polystyrene Particles in Plasmonic Nanopores
    Kerman, Sarp
    Chen, Chang
    Li, Yi
    Lagae, Liesbet
    Stakenborg, Tim
    Van Dorpe, Pol
    NANOPHOTONICS V, 2014, 9126
  • [33] Directions in pharmaceutical and environmental spectroscopy - Dispersive Raman - Raman and its potential in the pharmaceutical market
    Butterfield, D
    SPECTROSCOPY, 1999, 14 (03) : 27 - 28
  • [34] Optical properties of germania and titania at 1064 nm and at 1550 nm
    Diksha, D.
    Amato, A.
    Spagnuolo, V
    McGhee, G., I
    Chicoine, M.
    Clark, C.
    Hill, S.
    Hough, J.
    Johnston, R.
    Keil, R.
    Mavridi, N.
    Reid, S.
    Rowan, S.
    Schapals, T.
    Schiettekatte, F.
    Tait, S. C.
    Martin, I. W.
    Steinlechner, J.
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (12)
  • [35] Fiber based optical trapping of aerosols
    Rudd, D.
    Lopez-Mariscal, C.
    Summers, M.
    Shahvisi, A.
    Gutierrez-Vega, J. C.
    McGloin, D.
    OPTICS EXPRESS, 2008, 16 (19) : 14550 - 14560
  • [36] Nonlinear optical probes for 1064 nm laser
    Yan, Ping
    Millard, Andrew C.
    Teisseyre, Thomas Z.
    Wei, Mei-De
    Loew, Leslie M.
    BIOPHYSICAL JOURNAL, 2007, : 319A - 319A
  • [37] Chemical Analysis of Microscopic Fluorescent Materials by Dispersive 1064 Raman System
    Haibach, Frederick G.
    Chandler, Lynn
    Wu, Huawen
    Bergles, Eric
    SPECTROSCOPY, 2014, : 13 - 13
  • [38] Long-Wavelength Dispersive 1064 nm Raman: Counterfeit or Genuine Material Identification - Rum, Shampoo, et al.
    Dentinger, Claire
    Pullins, Steven
    Bergles, Eric
    SPECTROSCOPY, 2012, : 22 - 22
  • [39] Raman tweezers microspectroscopy of circa 100 nm extracellular vesicles
    Kruglik, Sergei G.
    Royo, Felix
    Guigner, Jean-Michel
    Palomo, Laura
    Seksek, Olivier
    Turpin, Pierre-Yves
    Tatischeff, Irene
    Falcon-Perez, Juan M.
    NANOSCALE, 2019, 11 (04) : 1661 - 1679
  • [40] 1064 nm Raman Microscopy Using a Multifocal Excitation Pattern
    Ji, Haojie
    Oliveira, Marcos
    Chang, Che-Wei
    Chan, James W.
    LABEL-FREE BIOMEDICAL IMAGING AND SENSING (LBIS) 2020, 2020, 11251