Generic torus orbit closures in Schubert varieties

被引:11
|
作者
Lee, Eunjeong [1 ]
Masuda, Mikiya [2 ]
机构
[1] Inst for Basic Sci Korea, Ctr Geometry & Phys, Pohang 37673, South Korea
[2] Osaka City Univ, Grad Sch Sci, Dept Math, Sumiyoshi Ku, Sugimoto, Osaka 5588585, Japan
基金
新加坡国家研究基金会;
关键词
Toric variety; Schubert variety; Pattern avoidance; Poincare polynomial; Forest; Bruhat interval polytope; EQUIVARIANT COHOMOLOGY; BOTT TOWERS; CHARACTER; NUMBERS;
D O I
10.1016/j.jcta.2019.105143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The closure of a generic torus orbit in the flag variety G/B of type A(n-1) is known to be a permutohedral variety and well studied. In this paper we introduce the notion of a generic torus orbit in the Schubert variety X-w (w is an element of S-n) and study its closure Y-w. We identify the maximal cone in the fan of Y-w corresponding to a fixed point uB (u <= w), associate a graph Gamma(w) (u) to each u <= w, and show that Y-w is smooth at uB if and only if Gamma(w) (u) is a forest. We also introduce a polynomial A(w)(t) for each w, which agrees with the Eulerian polynomial when w is the longest element of S-n, and show that the Poincare polynomial of Y-w agrees with A(w)(t(2)) when Y-w is smooth. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:44
相关论文
共 50 条
  • [41] Orbit closures and invariants
    Bate, Michael
    Geranios, Haralampos
    Martin, Benjamin
    MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (3-4) : 1121 - 1159
  • [42] Matrix orbit closures
    Berget A.
    Fink A.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2018, 59 (3): : 397 - 430
  • [43] NORMALITY OF SCHUBERT VARIETIES
    MEHTA, VB
    SRINIVAS, V
    AMERICAN JOURNAL OF MATHEMATICS, 1987, 109 (05) : 987 - 989
  • [44] Rationality and orbit closures
    Levy, J
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2003, 46 (02): : 204 - 215
  • [45] Schubert varieties and generalizations
    Springer, TA
    REPRESENTATION THEORIES AND ALGEBRAIC GEOMETRY, 1998, 514 : 413 - 440
  • [46] Intersections of Schubert varieties
    Mulay, SB
    JOURNAL OF ALGEBRA, 1996, 186 (03) : 661 - 676
  • [47] Toroidal Schubert Varieties
    Can, Mahir Bilen
    Hodges, Reuven
    Lakshmibai, Venkatramani
    ALGEBRAS AND REPRESENTATION THEORY, 2020, 23 (05) : 1927 - 1943
  • [48] Toroidal Schubert Varieties
    Mahir Bilen Can
    Reuven Hodges
    Venkatramani Lakshmibai
    Algebras and Representation Theory, 2020, 23 : 1927 - 1943
  • [49] Torus quotients of homogeneous spaces — minimal dimensional Schubert varieties admitting semi-stable points
    S. S. Kannan
    S. K. Pattanayak
    Proceedings - Mathematical Sciences, 2009, 119 : 469 - 485
  • [50] Torus quotients of homogeneous spaces - minimal dimensional Schubert varieties admitting semi-stable points
    Kannan, S. S.
    Pattanayak, S. K.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (04): : 469 - 485