Hierarchically tubular nitrogen-doped carbon structures for the oxygen reduction reaction

被引:26
|
作者
Wei, Wei [1 ]
Ge, Hongtao [1 ]
Huang, Linsong [1 ]
Kuang, Min [1 ]
Al-Enizi, Abdullah M. [2 ]
Zhang, Lijuan [1 ]
Zheng, Gengfeng [1 ]
机构
[1] Fudan Univ, Lab Adv Mat, Dept Chem, Collaborat Innovat Ctr Chem Energy Mat, Shanghai 200433, Peoples R China
[2] King Saud Univ, Coll Sci, Dept Chem, Riyadh 11451, Saudi Arabia
关键词
METAL-FREE ELECTROCATALYST; MESOPOROUS CARBON; EFFICIENT ELECTROCATALYST; GRAPHENE; CO; PHOTOOXIDATION; NANOPARTICLES; FRAMEWORKS; CATALYST; DOPANTS;
D O I
10.1039/c7ta02658g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rational design and synthesis of nitrogen-doped carbon structures are promising for renewable energy applications such as the oxygen reduction reaction (ORR). Here we develop a hierarchically tubular nitrogen-doped carbon structure by a simultaneous etching and regrowth method, using Cu2O nanowires as sacrificial templates. This hierarchical structure presents a large surface area (398 m(2) g(-1)), attributed to the numerous tiny nanotubes grown on the surface of the hierarchical structure. In addition, a high nitrogen doping ratio (8.03%) with major pyridinic and graphitic nitrogen atoms is obtained, via the Cu-N interaction from original Cu2O templates. This hierarchically tubular carbon structure exhibits excellent ORR catalytic activity, with high onset and half-wave potentials, large limiting current densities, and good stability.
引用
收藏
页码:13634 / 13638
页数:5
相关论文
共 50 条
  • [41] Carbon Nitride Anchored on a Nitrogen-Doped Carbon Nanotube Surface for Enhanced Oxygen Reduction Reaction
    Feng, Leiyu
    Wang, Tingting
    Sun, Han
    Jiang, Meng
    Chen, Yinguang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (51) : 56954 - 56962
  • [42] Nitrogen-doped mesoporous carbon hollow spheres as a novel carbon support for oxygen reduction reaction
    Hsu, Chun-Han
    Jan, Jhan-Yi
    Lin, Hong-Ping
    Kuo, Ping-Lin
    NEW JOURNAL OF CHEMISTRY, 2014, 38 (11) : 5521 - 5526
  • [43] Insight into the nitrogen-doped carbon as oxygen reduction reaction catalyst: The choice of carbon/nitrogen source and active sites
    Zeng, Dongrong
    Yu, Xiang
    Zhan, Yunfeng
    Cao, Linmin
    Wu, Xiaoxian
    Zhang, Bodong
    Huang, Jilin
    Lin, Zhipeng
    Xie, Fangyan
    Zhang, Weihong
    Chen, Jian
    Xie, Weiguang
    Mai, Wenjie
    Meng, Hui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (20) : 8563 - 8575
  • [44] Liquid-to-gas transition derived cobalt-based nitrogen-doped carbon nanosheets with hierarchically porous for oxygen reduction reaction
    Zhao, Zhenlu
    Sha, Qiqi
    Ma, Kongshuo
    Lu, Yizhong
    APPLIED SURFACE SCIENCE, 2020, 509 (509)
  • [45] Nitrogen-Doped Carbon Nanodots@Nanospheres as An Efficient Electrocatalyst for Oxygen Reduction Reaction
    Zhang, Haimin
    Chen, Jiangyao
    Li, Yibing
    Liu, Porun
    Wang, Yun
    An, Taicheng
    Zhao, Huijun
    ELECTROCHIMICA ACTA, 2015, 165 : 7 - 13
  • [46] Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium
    Nagaiah, Tharamani C.
    Kundu, Shankhamala
    Bron, Michael
    Muhler, Martin
    Schuhmann, Wolfgang
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (03) : 338 - 341
  • [47] Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen-Doped Carbon Materials
    Singh, Santosh K.
    Takeyasu, Kotaro
    Nakamura, Junji
    ADVANCED MATERIALS, 2019, 31 (13)
  • [48] Ni/Cu Regulating Nitrogen-Doped Porous Carbon as Electrocatalyst for Oxygen Reduction Reaction
    Hu, Hao
    Liang, Jia-Hao
    Zu, Zhao-Yang
    Mi, Jian-Li
    Xiao, Bei-Bei
    Zhang, Peng
    CHEMISTRYSELECT, 2021, 6 (27): : 6949 - 6956
  • [49] Mechanistic analysis of highly active nitrogen-doped carbon nanotubes for the oxygen reduction reaction
    Vazquez-Arenas, Jorge
    Higgins, Drew
    Chen, Zhu
    Fowler, Michael
    Chen, Zhongwei
    JOURNAL OF POWER SOURCES, 2012, 205 : 215 - 221
  • [50] Ruthenium Supported on Nitrogen-Doped Carbon Nanotubes for the Oxygen Reduction Reaction in Alkaline Media
    Mabena, L. F.
    Modibedi, R. M.
    Ray, S. Sinha
    Coville, N. J.
    FUEL CELLS, 2012, 12 (05) : 862 - 868