Improved Deep Point Cloud Geometry Compression

被引:58
|
作者
Quach, Maurice [1 ]
Valenzise, Giuseppe [1 ]
Dufaux, Frederic [1 ]
机构
[1] Univ Paris Saclay, CNRS, Cent Supelec, Lab Signaux & Syst, F-91190 Gif Sur Yvette, France
关键词
point clouds; compression; neural networks; geometry; octree;
D O I
10.1109/mmsp48831.2020.9287077
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Point clouds have been recognized as a crucial data structure for 3D content and are essential in a number of applications such as virtual and mixed reality, autonomous driving, cultural heritage, etc. In this paper, we propose a set of contributions to improve deep point cloud compression, i.e.: using a scale hyperprior model for entropy coding; employing deeper transforms; a different balancing weight in the focal loss; optimal thresholding for decoding; and sequential model training. In addition, we present an extensive ablation study on the impact of each of these factors, in order to provide a better understanding about why they improve RD performance. An optimal combination of the proposed improvements achieves BD-PSNR gains over G-PCC trisoup and octree of 5.50 (6.48) dB and 6.84 (5.95) dB, respectively, when using the point-to-point (point-to-plane) metric. Code is available at https://github.com/mauriceqch/pcc_geo_cnn_v2.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Isolated Points Prediction via Deep Neural Network on Point Cloud Lossless Geometry Compression
    Wei, Ziwei
    Niu, Benben
    Xiao, Haodong
    He, Yun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (01) : 407 - 420
  • [22] Deep Compression for Dense Point Cloud Maps
    Wiesmann, Louis
    Milioto, Andres
    Chen, Xieyuanli
    Stachniss, Cyrill
    Behley, Jens
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02): : 2060 - 2067
  • [23] Point AE-DCGAN: A deep learning model for 3D point cloud lossy geometry compression
    Xu, Jiacheng
    Fang, Zhijun
    Gao, Yongbin
    Ma, Siwei
    Jin, Yaochu
    Zhou, Heng
    Wang, Anjie
    2021 DATA COMPRESSION CONFERENCE (DCC 2021), 2021, : 379 - 379
  • [24] A Volumetric Approach to Point Cloud Compression-Part II: Geometry Compression
    Krivokuca, Maja
    Chou, Philip A.
    Koroteev, Maxim
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 2217 - 2229
  • [25] POINT CLOUD GEOMETRY COMPRESSION VIA NEURAL GRAPH SAMPLING
    Gao, Linyao
    Fan, Tingyu
    Wan, Jianqiang
    Xu, Yiling
    Sun, Jun
    Ma, Zhan
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3373 - 3377
  • [26] Lightweight super resolution network for point cloud geometry compression
    Zhang, Wei
    Li, Dingquan
    Li, Ge
    Gao, Wen
    2024 DATA COMPRESSION CONFERENCE, DCC, 2024, : 602 - 602
  • [27] A SYNDROME-BASED AUTOENCODER FOR POINT CLOUD GEOMETRY COMPRESSION
    Milani, Simone
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2686 - 2690
  • [28] SPCGC: Scalable Point Cloud Geometry Compression for Machine Vision
    Xie, Liang
    Gao, Wei
    Zheng, Huiming
    Li, Ge
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 17272 - 17278
  • [29] LEARNING CONVOLUTIONAL TRANSFORMS FOR LOSSY POINT CLOUD GEOMETRY COMPRESSION
    Quach, Maurice
    Valenzise, Giuseppe
    Dufaux, Frederic
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 4320 - 4324
  • [30] Efficient Large-Scale Point Cloud Geometry Compression
    Lu, Shiyu
    Han, Cheng
    Yang, Huamin
    SENSORS, 2025, 25 (05)