Subsystem-Based GW/Bethe-Salpeter Equation

被引:22
|
作者
Toelle, Johannes [1 ,2 ]
Deilmann, Thorsten [1 ,3 ]
Rohlfing, Michael [1 ,3 ]
Neugebauer, Johannes [1 ,2 ]
机构
[1] Westfalische Wilhelms Univ, Ctr Multiscale Theory & Computat, D-48149 Munster, Germany
[2] Westfalische Wilhelms Univ, Theoret Organ Chem Organ Chem Inst, D-48149 Munster, Germany
[3] Westfalische Wilhelms Univ, Inst Festkorpertheorie, D-48149 Munster, Germany
关键词
CONSTRAINED ELECTRON-DENSITY; KOHN-SHAM EQUATIONS; AB-INITIO CALCULATIONS; DIELECTRIC-CONSTANT; BASIS-SETS; OPTICAL-ABSORPTION; HOLE EXCITATIONS; EXCITED-STATES; FORMALISM; GW;
D O I
10.1021/acs.jctc.0c01307
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Subsystem Density-Functional Theory and its extension to excited states, namely, subsystem Time-Dependent Density-Functional Theory, have been proven to be efficient and accurate fragmentation approaches for ground and excited states. In the present study we extend this approach to the subsystem-based description of total systems by means of GW and the Bethe-Salpeter equation (BSE). For this, we derive the working equations starting from a subsystem-based partitioning of the screened-Coulomb interaction for an arbitrary number of subsystems. Making use of certain approximations, we develop a parameter-free approach in which environmental screening contributions are effectively included for each subsystem. We demonstrate the applicability of these approximations by comparing quasi-particle energies and excitation energies from subsystem-based GW/BSE calculations to the supermolecular reference. Furthermore, we demonstrate the computational efficiency and the usefulness of this method for the description of photoinduced processes in complex chemical environments.
引用
收藏
页码:2186 / 2199
页数:14
相关论文
共 50 条
  • [21] NONRELATIVISTIC LIMIT OF A BETHE-SALPETER EQUATION
    WANDERS, G
    PHYSICAL REVIEW, 1956, 104 (06): : 1782 - 1783
  • [22] BETHE-SALPETER EQUATION IN MOMENTUM SPACE
    SAENGER, RM
    JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (12) : 2366 - &
  • [23] Confinement phenomenology in the Bethe-Salpeter equation
    Bhagwat, MS
    Pichowsky, MA
    Tandy, PC
    PHYSICAL REVIEW D, 2003, 67 (05):
  • [24] RELATIVISTIC QUARK MODELS BASED ON BETHE-SALPETER EQUATION
    SUNDARESAN, MK
    WATSON, PJS
    ANNALS OF PHYSICS, 1972, 71 (02) : 443 - +
  • [25] FREDHOLM METHOD FOR BETHE-SALPETER EQUATION
    GRAVESMORRIS, PR
    PHYSICAL REVIEW LETTERS, 1966, 16 (05) : 201 - +
  • [26] Glueballs from the Bethe-Salpeter equation
    Sanchis-Alepuz, Helios
    Fischer, Christian S.
    Kellermann, Christian
    von Smekal, Lorenz
    PHYSICAL REVIEW D, 2015, 92 (03):
  • [27] CHARGE CONSERVATION IN THE BETHE-SALPETER EQUATION
    ALLCOCK, GR
    HOOTON, DJ
    NUOVO CIMENTO, 1958, 8 (04): : 590 - 598
  • [28] ON THE REDUNDANT SOLUTIONS OF THE BETHE-SALPETER EQUATION
    OHNUKI, Y
    TAKAO, Y
    UMEZAWA, H
    PROGRESS OF THEORETICAL PHYSICS, 1960, 23 (02): : 273 - 283
  • [29] Tetraquarks from the bethe-salpeter equation
    Eichmann, Gernot
    Fischer, Christian S.
    Heupel, Walter
    Acta Physica Polonica B, Proceedings Supplement, 2015, 8 (02) : 425 - 432
  • [30] BETHE-SALPETER EQUATION AND GOLDSTEIN PROBLEM
    KEAM, RF
    JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (02) : 394 - &