Fractional statistics in terms of the r-generalized Fibonacci sequences

被引:3
|
作者
Rachidi, M
Saidi, EH
Zerouaoui, J
机构
[1] Fac Sci Rabat, Lab UFR Phys Hautes Energies, Rabat, Morocco
[2] Fac Sci Rabat, Dept Math & Informat, Rabat, Morocco
[3] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
来源
关键词
generalized spin; quasiparticles; Pauli exclusion principle; generalized r-Fibonacci sequences;
D O I
10.1142/S0217751X03012394
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We develop a method to approach quantum gases of quasiparticles with generalized statistics. This way is based on Fibonacci hierarchies and offers an alternative issue to the Haldane-Wu method. We give the statistical weights densities pm of gases of quasiparticles with s = 1/M : mod(1), M greater than or equal to 2, using the combinatorial aspects of M-generalized Fibonacci series. This is a remarkable feature which envelopes naturally the Fermi and Bose statistics.
引用
收藏
页码:159 / 171
页数:13
相关论文
共 50 条
  • [31] Generalized Fibonacci sequences in groupoids
    Kim, Hee Sik
    Neggers, J.
    So, Keum Sook
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [32] Convergent ∞-generalized Fibonacci sequences
    Motta, W
    Rachidi, M
    Saeki, O
    FIBONACCI QUARTERLY, 2000, 38 (04): : 326 - 333
  • [33] Generalized Fibonacci sequences in groupoids
    Hee Sik Kim
    J Neggers
    Keum Sook So
    Advances in Difference Equations, 2013
  • [34] ON PERIODICITY IN GENERALIZED FIBONACCI SEQUENCES
    BLOOM, DM
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (08): : 856 - &
  • [35] RESIDUES OF GENERALIZED FIBONACCI SEQUENCES
    YALAVIGI, CC
    FIBONACCI QUARTERLY, 1977, 15 (01): : 1 - 2
  • [36] R-Generalized Fuzzy Subnear-rings (II)
    Liao Zu-hua
    Cao Shu
    Zhang Yang
    CEIS 2011, 2011, 15
  • [37] Generalized Fibonacci numbers and dimer statistics
    Lu, WT
    Wu, FY
    MODERN PHYSICS LETTERS B, 2002, 16 (30): : 1177 - 1181
  • [38] Generalized Fibonacci numbers and Dimer statistics
    Lu, WT
    Wu, FY
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON FRONTIERS OF SCIENCE, 2003, : 316 - 320
  • [39] Equations with Solution in Terms of Fibonacci and Lucas Sequences
    Andreescu, Titu
    Andrica, Dorin.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2014, 22 (03): : 5 - 12
  • [40] PRIMITIVE PERIODS OF GENERALIZED FIBONACCI SEQUENCES
    SMITH, C
    HOGGATT, VE
    FIBONACCI QUARTERLY, 1976, 14 (04): : 343 - 347