PBI-based polymer electrolyte membranes fuel cells -: Temperature effects on cell performance and catalyst stability

被引:138
|
作者
Lobato, Justo [1 ]
Canizares, Pablo [1 ]
Rodrigo, Manuel A. [1 ]
Linares, Jose J. [1 ]
机构
[1] Univ Castilla La Mancha, Chem Engn Dept, E-13004 Ciudad Real, Spain
关键词
polybenzimidazole; high temperature PEMFCs; cell performance; temperature effects; impedance spectra; catalyst stability;
D O I
10.1016/j.electacta.2006.11.014
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, it has been shown that the temperature (ranging from 100 to 175 degrees C) greatly influences the performance of H3PO4-doped polybenzimidazole-based high-temperature polymer electrolyte membrane fuel cells by several and complex processes. The temperature, by itself, increases H3PO4-doped PBI conductivity and enhances the electrodic reactions as it rises. Nevertheless, high temperatures reduce the level of hydration of the membrane, above 130-140 degrees C accelerate the self-dehydration of H3PO4, and they may boost the process of catalyst particle agglomeration that takes place in strongly acidic H3PO4 medium (as checked by multi-cycling sweep voltammetry), reducing the overall electrochemical active surface. The first process seems to have a rapid response to changes in the temperature and controls the cell performance immediately after them. The second process seems to develop slower, and influences the cell performance in the "long-term". The predominant processes, at each moment and temperature, determine the effect of the temperature on the cell performance, as potentiostatic curves display. "Long-term" polarization curves grow up to 150 degrees C and decrease at 175 degrees C. "Short-term" ones continuously increase as the temperature does after "conditioning" the cell at 125 degrees C. On the contrary, when compared the polarization curves at 175 degrees C a continuous decrease is observed with the "conditioning" temperature. A discussion of the observed trends is proposed in this work. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3910 / 3920
页数:11
相关论文
共 50 条
  • [21] PBI derivatives: Polymer electrolyte fuel cell membrane for high temperature operation
    Kim, HJ
    Lim, TH
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2004, 10 (07) : 1081 - 1085
  • [22] Creep properties of catalyst coated membranes for polymer electrolyte fuel cells
    Alavijeh, Alireza Sadeghi
    Khorasany, Ramin M. H.
    Habisch, Aronne
    Wang, G. Gary
    Kjeang, Erik
    JOURNAL OF POWER SOURCES, 2015, 285 : 16 - 28
  • [23] New polymer electrolyte membranes for low temperature fuel cells
    Ennari, J
    Hietala, S
    Paronen, M
    Sundholm, F
    Walsby, N
    Karjalainen, M
    Serimaa, R
    Lehtinen, T
    Sundholm, G
    MACROMOLECULAR SYMPOSIA, 1999, 146 : 41 - 45
  • [24] Advances in the high performance polymer electrolyte membranes for fuel cells
    Zhang, Hongwei
    Shen, Pei Kang
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) : 2382 - 2394
  • [25] Polymer electrolyte membranes for fuel cells
    Zhang Hongwei
    Zhou Zhentao
    PROGRESS IN CHEMISTRY, 2008, 20 (04) : 602 - 619
  • [26] Membranes for polymer electrolyte fuel cells
    Glüsen, A
    Stolten, D
    CHEMIE INGENIEUR TECHNIK, 2003, 75 (11) : 1591 - 1597
  • [27] Polymer electrolyte membranes for fuel cells
    Lee, JS
    Quan, ND
    Hwang, JM
    Lee, SD
    Kim, H
    Lee, H
    Kim, HS
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2006, 12 (02) : 175 - 183
  • [28] Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-Based PEM Fuel Cell
    Ubong, E. U.
    Shi, Z.
    Wang, X.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (10) : B1276 - B1282
  • [29] Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance
    Passalacqua, E
    Lufrano, F
    Squadrito, G
    Patti, A
    Giorgi, L
    ELECTROCHIMICA ACTA, 2001, 46 (06) : 799 - 805
  • [30] Influence of the size and shape of silica nanoparticles on the properties and degradation of a PBI-based high temperature polymer electrolyte membrane
    Ossiander, T.
    Heinzl, C.
    Gleich, S.
    Schoenberger, F.
    Voelk, P.
    Welsch, M.
    Scheu, C.
    JOURNAL OF MEMBRANE SCIENCE, 2014, 454 : 12 - 19