Investigation of multifilament MgB2 superconducting joint technique for development of MRI magnets

被引:12
|
作者
Yoo, B. H. [1 ]
Kim, J. C. [1 ]
Kim, Y. G. [1 ]
Hwang, D. Y. [2 ]
Lee, J. H. [1 ]
Lee, H. G. [1 ]
机构
[1] Korea Univ, Dept Mat Sci & Engn, Seoul 02841, South Korea
[2] Kiswire Adv Technol Co Ltd, Daejeon 34026, South Korea
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2018年 / 89卷 / 09期
关键词
DESIGN; CONSTRUCTION; WIRES;
D O I
10.1063/1.5040549
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This study presents the investigation of superconducting joints fabricated using multifilament magnesium diboride (MgB2) wires for the development of persistent-current mode magnetic resonance imaging (MRI) magnets. The critical current of the jointed samples decreased with increasing cutting angle because the smaller cutting angle allowed greater exposure of the MgB2 filament, thereby increasing the contact area for the wire-bulk-wire connection. In addition, an appropriate pressing pressure (300 MPa) was necessary to establish the multifilament MgB2 joint without significant degradation of superconducting properties. The resistance of the optimal MgB2 joint, measured using the field-decay technique, was <1.5 x 10(-14)Omega. Therefore, the proposed joint technique can be employed for developing multifilament MgB2 MRI magnets operating in the persistent-current mode. Published by AIP Publishing.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Pulsed Magnetic Field Assisted Technique for Joining MgB2 Conductors for Persistent Mode MRI Magnets
    Wozniak, Mariusz
    Glowacki, Bartek A.
    Setiadinata, Sylvester B.
    Thomas, Adrian M.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2013, 23 (03)
  • [22] Magnetostriction in superconducting MgB2
    Nabialek, A
    Kundys, B
    Bukhantsev, Y
    Vasiliev, S
    Wisniewski, A
    Jun, J
    Kazakov, SM
    Karpinski, J
    Szymczak, H
    PHYSICA B-CONDENSED MATTER, 2002, 319 (1-4) : 286 - 292
  • [23] AC loss properties of MgB2 multifilament wires
    Tanaka, Kazuhide
    Funaki, Kazuo
    Sueyoshi, Takahiro
    Sasashige, Yushi
    Kajikawa, Kazuhiro
    Iwakuma, Masataka
    Okada, Michiya
    Kumakura, Hiroaki
    Hayashi, Hidemi
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2008, 21 (09):
  • [24] Superconducting cellular MgB2
    Grinenko, V. A.
    Krasnoperov, E. P.
    Mikhailov, B. P.
    PHYSICS OF METALS AND METALLOGRAPHY, 2007, 103 (06): : 561 - 565
  • [25] Superconducting MgB2 nanowires
    Wu, YY
    Messer, B
    Yang, PD
    ADVANCED MATERIALS, 2001, 13 (19) : 1487 - +
  • [26] Superconducting MgB2 microstrips
    Strbík, V
    Chromik, S
    Benacka, S
    Gazi, S
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 : D505 - D508
  • [27] Superconducting cellular MgB2
    V. A. Grinenko
    E. P. Krasnoperov
    B. P. Mikhailov
    The Physics of Metals and Metallography, 2007, 103 : 561 - 565
  • [28] Fabrication of MgB2 superconducting thick films by electrophoresis technique
    Zhu, YB
    Xu, JD
    Wang, SF
    Zhou, YL
    Chen, ZH
    Lu, HB
    He, M
    Dai, SY
    Zhang, Q
    Yang, GZ
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2002, 371 (01): : 7 - 9
  • [29] MgB2 Superconducting Joint Architecture with the Functionality to Screen External Magnetic Fields for MRI Magnet Applications
    Patel, Dipak
    Matsumoto, Akiyoshi
    Kumakura, Hiroaki
    Maeda, Minoru
    Kim, Su-Hun
    Liang, Hao
    Yamauchi, Yusuke
    Choi, Seyong
    Kim, Jung Ho
    Hossain, Md Shahriar A.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (02) : 3418 - 3426
  • [30] Superior homogeneity of trapped magnetic field in superconducting MgB2 bulk magnets
    Ishihara, A.
    Akasaka, T.
    Tomita, M.
    Kishio, K.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2017, 30 (03):