C0 and C1 theories and test functions for FEM patch test in microstructures

被引:2
|
作者
Chen WanJi [1 ]
机构
[1] Shenyang Aerosp Univ, Inst Struct Anal Aerocraft, Shenyang 110136, Peoples R China
关键词
couple stress theory; displacement-rotation dependent theory; displacement-rotation independent theory; finite element method for microstructures; test function for patch test; MINDLIN PLATE;
D O I
10.1007/s11433-010-3200-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Among many theories and categories in microstructures, rotation-displacement used as "independent" or "dependent" variables, is a noticeable topic. In FEM, it is called C-0 and C-1 theory. The convergence criteria of finite elements for microstructures are less mature than those for the conventional thin plate bending problem. In this paper, the patch test functions for assessing convergence of the C-0 and C-1 finite elements in microstructures is established based on the enhanced patch test theory. The author has further explored the C-0 and C-1 finite element theories and investigated the difference and correlation between their finite element formulations. Newly proposed finite element theories for microstructures are as follows: (1) the displacement-rotation dependent C-1 element that requires the element function satisfying both C-0 and C-1 continuity; (2) the displacement-rotation independent C-0 element which requires new convergence criteria, such as non-zero constant shear stress patch test and zero constant shear stress patch test for approximating C-1 element.
引用
收藏
页码:1086 / 1093
页数:8
相关论文
共 50 条
  • [41] On C0 and C1 continuity of envelopes of rotational solids and its application to 5-axis CNC machining
    Ponce-Vanegas, Felipe
    Bizzarri, Michal
    Barton, Michael
    COMPUTER AIDED GEOMETRIC DESIGN, 2023, 107
  • [42] NOTE ON OPERATORS OF CLASS C0(1)
    ROSENOER, S
    ACTA SCIENTIARUM MATHEMATICARUM, 1983, 46 (1-4): : 287 - 293
  • [43] Some Applications of (C0, 1)-Semigroups
    Chang, Yu-Hsien
    Hong, Cheng-hong
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [44] Containment of c0 and ℓ1 in π1(E, F)
    Mohsen Alimohammady
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2004, 114 : 199 - 202
  • [45] Whitney extension theorems for convex functions of the classes C1 and C1,ω
    Azagra, Daniel
    Mudarra, Carlos
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2017, 114 : 133 - 158
  • [46] MAGNETIC-MOMENT OF THE LAMBDA(C),XI(C1)(+) AND-XI(C1)(0)
    SAVAGE, MJ
    PHYSICS LETTERS B, 1994, 326 (3-4) : 303 - 306
  • [47] Three-Dimensional Data Transfer Operators in Plasticity Using SPR Technique with C0, C1, and C2 Continuity
    Khoei, A. R.
    Gharehbaghi, S. A.
    SCIENTIA IRANICA, 2008, 15 (05) : 554 - 567
  • [48] QUASI-ISOMETRIES ON SUBSETS OF C0(K) AND C0(1) (K) SPACES WHICH DETERMINE K
    Galego, Eloi Medina
    Porto Da Silva, Andre Luis
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (08) : 3455 - 3470
  • [49] Norms on C1([0, 1])and their isometries
    Kazuhiro Kawamura
    Hironao Koshimizu
    Takeshi Miura
    Acta Scientiarum Mathematicarum, 2018, 84 (1-2): : 239 - 261
  • [50] Observation of χc0 → Σ+(Σ)over-bar-η and evidence for χc1,2 → Σ+(Σ)over-bar-η
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Afedulidis, O.
    Ai, X. C.
    Aliberti, R.
    Amoroso, A.
    An, Q.
    Bai, Y.
    Bakina, O.
    Balossino, I.
    Ban, Y.
    Bao, H. -R.
    Batozskaya, V.
    Begzsuren, K.
    Berger, N.
    Berlowski, M.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bianco, E.
    Bortone, A.
    Boyko, I.
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Che, G. R.
    Chelkov, G.
    Chen, C.
    Chen, C. H.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, H. Y.
    Chen, M. L.
    Chen, S. J.
    Chen, S. L.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Y. Q.
    Chen, Z. J.
    PHYSICAL REVIEW D, 2024, 110 (11)