Random walks on the BMW monoid: an algebraic approach

被引:0
|
作者
Wolff, Sarah [1 ]
机构
[1] Denison Univ, Granville, OH 43023 USA
关键词
Metropolis algorithm; Systematic scans; Random walks; Representation theory; Semisimple algebras; FOURIER-TRANSFORMS; COMPUTATION;
D O I
10.1007/s10801-018-0858-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Metropolis-based systematic scan algorithms for generating Birman-Murakami-Wenzl (BMW) monoid basis elements of the BMW algebra. As the BMW monoid consists of tangle diagrams, these scanning strategies can be rephrased as random walks on links and tangles. We also consider the Brauer algebra and use Metropolis-based scans to generate Brauer diagrams, giving rise to random walks on perfect matchings. Taking an algebraic perspective, we translate these walks into left multiplication operators in the BMW algebra and so give an algebraic interpretation of the Metropolis algorithm in this setting.
引用
收藏
页码:347 / 361
页数:15
相关论文
共 50 条
  • [21] A generating function approach to branching random walks
    Bertacchi, Daniela
    Zucca, Fabio
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2017, 31 (02) : 229 - 253
  • [22] THE APPROACH TO EQUILIBRIUM IN QUANTUM RANDOM-WALKS
    GODOY, S
    BRAUN, E
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1994, 203 (3-4) : 414 - 424
  • [23] Martingale approach to subexponential asymptotics for random walks
    Denisov, Denis
    Wachtel, Vitali
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 9
  • [24] THE MONOID GENERATED BY PROJECTIONS IN AN ALGEBRAIC GROUP
    PUTCHA, MS
    JOURNAL OF ALGEBRA, 1990, 128 (01) : 45 - 54
  • [26] THE RING OF REGULAR FUNCTIONS OF AN ALGEBRAIC MONOID
    Renner, Lex
    Rittatore, Alvaro
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (12) : 6671 - 6683
  • [27] Algebraic Diagonals and Walks
    Bostan, Alin
    Dumont, Louis
    Salvy, Bruno
    PROCEEDINGS OF THE 2015 ACM ON INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'15), 2015, : 77 - 84
  • [28] Are random walks random?
    Nogues, J
    Costa-Kramer, JL
    Rao, KV
    PHYSICA A, 1998, 250 (1-4): : 327 - 334
  • [29] On random walks and switched random walks on homogeneous spaces
    Moreno, Elvira
    Velasco, Mauricio
    COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (03) : 398 - 421
  • [30] Expander Random Walks: A Fourier-Analytic Approach
    Cohen, Gil
    Peri, Noam
    Ta-Shma, Amnon
    STOC '21: PROCEEDINGS OF THE 53RD ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2021, : 1643 - 1655