Misalignment Fault Diagnosis for Wind Turbines Based on Information Fusion

被引:11
|
作者
Xiao, Yancai [1 ]
Xue, Jinyu [1 ]
Zhang, Long [2 ]
Wang, Yujia [1 ]
Li, Mengdi [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Mech Elect & Control Engn, Beijing 100044, Peoples R China
[2] Univ Manchester, Dept Elect & Elect Engn, Manchester M13 9PL, Lancs, England
基金
中国国家自然科学基金;
关键词
wind turbines; misalignment; fault diagnosis; information fusion; improved artificial bee colony algorithm; LSSVM; D– S evidence theory;
D O I
10.3390/e23020243
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Most conventional wind turbine fault diagnosis techniques only use a single type of signal as fault feature and their performance could be limited to such signal characteristics. In this paper, multiple types of signals including vibration, temperature, and stator current are used simultaneously for wind turbine misalignment diagnosis. The model is constructed by integrated methods based on Dempster-Shafer (D-S) evidence theory. First, the time domain, frequency domain, and time-frequency domain features of the collected vibration, temperature, and stator current signal are respectively taken as the inputs of the least square support vector machine (LSSVM). Then, the LSSVM outputs the posterior probabilities of the normal, parallel misalignment, angular misalignment, and integrated misalignment of the transmission systems. The posterior probabilities are used as the basic probabilities of the evidence fusion, and the fault diagnosis is completed according to the D-S synthesis and decision rules. Considering the correlation between the inputs, the vibration and current feature vectors' dimensionalities are reduced by t-distributed stochastic neighbor embedding (t-SNE), and the improved artificial bee colony algorithm is used to optimize the parameters of the LSSVM. The results of the simulation and experimental platform demonstrate the accuracy of the proposed model and its superiority compared with other models.
引用
收藏
页码:1 / 20
页数:19
相关论文
共 50 条
  • [22] Fault Diagnosis of Wind Turbines Gearbox Based on SOFM Neural Network
    Ding, Shuo
    Wu, Qinghui
    Zhang, Fang
    2019 34RD YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2019, : 691 - 694
  • [23] Fault Diagnosis for Wind Turbines Based on ReliefF and eXtreme Gradient Boosting
    Wu, Zidong
    Wang, Xiaoli
    Jiang, Baochen
    APPLIED SCIENCES-BASEL, 2020, 10 (09):
  • [24] Fault Diagnosis of Wind Turbines Based on Improved Dynamic Network Marker
    Pan, Zesheng
    Fang, Ruiming
    Wei, Tingyu
    Shang, Rongyan
    Peng, Changqing
    IEEE ACCESS, 2025, 13 : 2474 - 2485
  • [25] A research on intelligent fault diagnosis of wind turbines based on ontology and FMECA
    Zhou, Anmei
    Yu, Dejie
    Zhang, Wenyi
    ADVANCED ENGINEERING INFORMATICS, 2015, 29 (01) : 115 - 125
  • [26] RESEARCH ON BEARING FAULT DIAGNOSIS OF WIND TURBINES BASED ON TRANSFER LEARNING
    An W.
    Chen C.
    Tian M.
    Su X.
    Sun X.
    Gu Y.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (06): : 367 - 373
  • [27] Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview
    Fekih, Afef
    Habibi, Hamed
    Simani, Silvio
    ENERGIES, 2022, 15 (19)
  • [28] Fault Diagnosis of Wind Turbine Gearbox Based on KELM and Multi-sensor Information Fusion
    Long X.
    Yang P.
    Guo H.
    Zhao Z.
    Zhao Z.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2019, 43 (17): : 132 - 139
  • [29] Transformer fault diagnosis based on information fusion technology
    1600, International Frequency Sensor Association (167):
  • [30] Intelligent Fault Diagnosis Method of Wind Turbines Planetary Gearboxes Based on a Multi-Scale Dense Fusion Network
    Huang, Xinghua
    Li, Yuanyuan
    Chai, Yi
    FRONTIERS IN ENERGY RESEARCH, 2021, 9