LEBESGUE DECOMPOSITION FOR REPRESENTABLE FUNCTIONALS ON *-ALGEBRAS

被引:7
|
作者
Tarcsay, Zsigmond [1 ]
机构
[1] Eotvos Lorand Univ, Dept Appl Anal, Pazmany Peter Setany 1-c, H-1117 Budapest, Hungary
关键词
POSITIVE LINEAR FUNCTIONALS; RADON-NIKODYM THEOREM; OPERATORS;
D O I
10.1017/S0017089515000300
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We offer a Lebesgue-type decomposition of a representable functional on a *-algebra into absolutely continuous and singular parts with respect to another. Such a result was proved by Zs. Szucs due to a general Lebesgue decomposition theorem of S. Hassi, H.S.V. de Snoo, and Z. Sebestyen concerning non-negative Hermitian forms. In this paper, we provide a self-contained proof of Szucs' result and in addition we prove that the corresponding absolutely continuous parts are absolutely continuous with respect to each other.
引用
收藏
页码:491 / 501
页数:11
相关论文
共 50 条
  • [31] ON ALGEBRAS REPRESENTABLE BY TRIANGULAR MATRICES
    NESTERENKO, NG
    DOKLADY AKADEMII NAUK SSSR, 1989, 305 (02): : 276 - 279
  • [32] Representable Effect Algebras and Observables
    Anatolij Dvurečenskij
    International Journal of Theoretical Physics, 2014, 53 : 2855 - 2866
  • [33] A Note on Representable Autometrized Algebras
    Rao, B. V. Subba
    Kanakam, Akella
    Yedlapalli, Phani
    THAI JOURNAL OF MATHEMATICS, 2019, 17 (01): : 277 - 281
  • [34] Axiomatizability of representable domain algebras
    Hirsch, Robin
    Mikulas, Szabolcs
    JOURNAL OF LOGIC AND ALGEBRAIC PROGRAMMING, 2011, 80 (02): : 75 - 91
  • [35] On diagonals in representable cylindric algebras
    M. Ferenczi
    algebra universalis, 1999, 41 : 187 - 199
  • [36] PARTITIONER-REPRESENTABLE ALGEBRAS
    FRANKIEWICZ, R
    ZBIERSKI, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) : 926 - 928
  • [37] On diagonals in representable cylindric algebras
    Ferenczi, M
    ALGEBRA UNIVERSALIS, 1999, 41 (03) : 187 - 199
  • [38] Subcompletions of representable relation algebras
    Roger D. Maddux
    Algebra universalis, 2018, 79
  • [39] Subcompletions of representable relation algebras
    Maddux, Roger D.
    ALGEBRA UNIVERSALIS, 2018, 79 (02)
  • [40] Remarks on "Representable Difference Algebras"
    Ahn, Sun Shin
    Lee, Kyoung Ja
    KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (03): : 433 - 436