COVID-19 Identification from Chest X-Rays

被引:0
|
作者
Mporas, Iosif [1 ]
Naronglerdrit, Prasitthichai [2 ]
机构
[1] Univ Hertfordshire, Sch Phys Engn & Comp Sci, Hatfield AL10 9AB, Herts, England
[2] Kasetsart Univ, Fac Engn Sriracha, Dept Comp Engn, Sriracha Campus, Chon Buri, Thailand
关键词
COVID-19; X-rays; transfer learning; convolutional neural networks;
D O I
10.1109/bia50171.2020.9244509
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial Intelligence and Data Science community has contributed to the global response against the new coronavirus, COVID-19. Significant attention has been given to detection and diagnosis tools with rapid diagnostic tools based on X-rays using deep learning being proposed. In this paper we present an evaluation of several well-known pretrained deep CNN models in a transfer learning setup for COVID-19 detection from chest X-ray images. Two different publicly available datasets were employed and different setups were tested using each of them separately of mixing them. The best performing models among the evaluated ones were the DenseNet, ResNet and Xception models, with the results indicating the possibility of identifying COVID-19 positive cases from chest X-ray images.
引用
收藏
页码:69 / 72
页数:4
相关论文
共 50 条
  • [41] A deep convolutional neural network for COVID-19 detection using chest X-rays
    Bassi P.R.A.S.
    Attux R.
    Research on Biomedical Engineering, 2022, 38 (01) : 139 - 148
  • [42] Application of deep learning to identify COVID-19 infection in posteroanterior chest X-rays
    Maharjan, Jenish
    Calvert, Jacob
    Pellegrini, Emily
    Green-Saxena, Abigail
    Hoffman, Jana
    McCoy, Andrea
    Mao, Qingqing
    Das, Ritankar
    CLINICAL IMAGING, 2021, 80 : 268 - 273
  • [43] Truncated inception net: COVID-19 outbreak screening using chest X-rays
    Dipayan Das
    K. C. Santosh
    Umapada Pal
    Physical and Engineering Sciences in Medicine, 2020, 43 : 915 - 925
  • [44] Classifying chest x-rays for COVID-19 through transfer learning: a systematic review
    Devanshi Mallick
    Arshdeep Singh
    Eddie Yin-Kwee Ng
    Vinay Arora
    Multimedia Tools and Applications, 2025, 84 (2) : 689 - 748
  • [45] COVID-19 Diagnosis in Chest X-rays Using Deep Learning and Majority Voting
    Ben Jabra, Marwa
    Koubaa, Anis
    Benjdira, Bilel
    Ammar, Adel
    Hamam, Habib
    APPLIED SCIENCES-BASEL, 2021, 11 (06):
  • [46] Covid-19 detection using chest X-rays: is lung segmentation important for generalization?
    Bassi P.R.A.S.
    Attux R.
    Research on Biomedical Engineering, 2022, 38 (04) : 1121 - 1139
  • [47] Densely attention mechanism based network for COVID-19 detection in chest X-rays
    Ullah, Zahid
    Usman, Muhammad
    Latif, Siddique
    Gwak, Jeonghwan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [48] Iteratively Pruned Deep Learning Ensembles for COVID-19 Detection in Chest X-Rays
    Rajaraman, Sivaramakrishnan
    Siegelman, Jenifer
    Alderson, Philip O.
    Folio, Lucas S.
    Folio, Les R.
    Antani, Sameer K.
    IEEE ACCESS, 2020, 8 (08): : 115041 - 115050
  • [49] Deep learning-based approach for detecting COVID-19 in chest X-rays
    Sahin, M. Emin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [50] COVID-19 pneumonia: relationship between initial chest X-rays and laboratory findings
    Nava-Munoz, A.
    Gomez-Pena, S.
    Fuentes-Ferrer, M. E.
    Cabeza, B.
    Victoria, A.
    Bustos, A.
    RADIOLOGIA, 2021, 63 (06): : 484 - 494