Threshold selection using competitive algorithm

被引:1
|
作者
He, Jinguo [1 ]
机构
[1] Cent Univ Nationalities, Sch Sci, Beijing, Peoples R China
关键词
threshold selection; competitive algorithm; histogram;
D O I
10.1109/WKDD.2010.102
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic threshold selection is significant in image segmentation, understanding and recognition. Finding global minimum of the histogram is difficult because many algorithms fail to end in a local minimum. A new competitive algorithm is proposed to automatically select threshold based on histogram analysis. Given a random initial value, the new algorithm begins to renew the value towards global minimum without stopping at local minimum by a competitive scheme. With the new algorithm, the briefness, low computation, and stability characteristic of threshold segmentation is reserved.
引用
收藏
页码:288 / 290
页数:3
相关论文
共 50 条
  • [31] Optimal feature selection for prediction of wind erosion threshold friction velocity using a modified evolution algorithm
    Kouchami-Sardoo, I
    Shirani, H.
    Esfandiarpour-Boroujeni, I
    Alvaro-Fuentes, J.
    Shekofteh, H.
    GEODERMA, 2019, 354
  • [32] AUTOMATIC THRESHOLD SELECTION USING THE WAVELET TRANSFORM
    OLIVO, JC
    CVGIP-GRAPHICAL MODELS AND IMAGE PROCESSING, 1994, 56 (03): : 205 - 218
  • [33] Threshold selection using Renyi's entropy
    Univ of Louisville, Louisville, United States
    Pattern Recognit, 1 (71-84):
  • [34] GRADIENT THRESHOLD SELECTION USING THE FACET MODEL
    ZUNIGA, OA
    HARALICK, RM
    PATTERN RECOGNITION, 1988, 21 (05) : 493 - 503
  • [35] Threshold variable selection using nonparametric methods
    Xia, Yingcun
    Li, Wai-Keung
    Tong, Howell
    STATISTICA SINICA, 2007, 17 (01) : 265 - 287
  • [36] Threshold selection using fuzzy set theory
    Chaira, T
    Ray, AK
    PATTERN RECOGNITION LETTERS, 2004, 25 (08) : 865 - 874
  • [38] ON THRESHOLD SELECTION USING CLUSTERING CRITERIA.
    Kittler, J.
    Illingworth, J.
    IEEE Transactions on Systems, Man and Cybernetics, 1985, SMC-15 (05): : 652 - 655
  • [39] Optimal threshold estimation using prototype selection
    Lipowezky, U
    Shenkar, V
    ADVANCES IN PATTERN RECOGNITION, 2000, 1876 : 737 - 746
  • [40] Contrast Enhancement Using Optimum Threshold Selection
    Rani, Geeta
    Agarwal, Monika
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2020, 8 (03) : 96 - 118