Linkage of quadratic Pfister forms

被引:9
|
作者
Chapman, Adam [1 ]
Gilat, Shira [2 ]
Vishne, Uzi [2 ]
机构
[1] Tel Hai Acad Coll, Dept Comp Sci, IL-12208 Upper Galilee, Israel
[2] Bar Ilan Univ, Dept Math, Ramat Gan, Israel
关键词
Linkage; Pfister forms; quadratic forms; quaternion algebras; QUATERNION ALGEBRAS; FUNCTION-FIELDS; CHARACTERISTIC-2;
D O I
10.1080/00927872.2017.1298776
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the necessary conditions for sets of quadratic n-fold Pfister forms to have a common (n-1)-fold Pfister factor. For any set S of n-fold Pfister forms generating a subgroup of (IqF)-F-n/Iqn+1F of order 2s in which every element has an n-fold Pfister representative, we associate an invariant in Iqn+1F which lives inside Iqn+s-1F when the forms in S have a common (n-1)-fold Pfister factor. We study the properties of this invariant and compute it explicitly in a few interesting cases.
引用
收藏
页码:5212 / 5226
页数:15
相关论文
共 50 条