FPGA Implementation of Feed-Forward Neural Networks for Smart Devices Development

被引:0
|
作者
Oniga, Stefan [1 ]
Tisan, Alin [1 ]
Mic, Daniel [1 ]
Lung, Claudiu [1 ]
Orha, Ioan [1 ]
Buchman, Attila [1 ]
Vida-Ratiu, Andrei [1 ]
机构
[1] N Univ Baia Mare, Dept Elect & Comp Engn, Baia Mare, Romania
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the results obtained in the implementation of Feed-Forward Artificial Neural Networks (FF-ANN) with one or several layers, used in the development of smart devices that needs learning capability and adaptive behavior. The networks were implemented using ANN specific blocks created by the authors using the System Generator software. The training and the testing of the networks was conducted using sets of 150 training and test vectors with 7 elements.
引用
收藏
页码:401 / 404
页数:4
相关论文
共 50 条
  • [41] Serial binary multiplication with feed-forward neural networks
    Cotofana, S
    Vassiliadis, S
    [J]. NEUROCOMPUTING, 1999, 28 : 1 - 19
  • [42] Correlation of internal representations in feed-forward neural networks
    Engel, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (13): : L323 - L327
  • [43] Distributed restoration in optical networks using feed-forward neural networks
    Karpat, Demeter Gokisik
    Bilgen, Semih
    [J]. PHOTONIC NETWORK COMMUNICATIONS, 2006, 12 (01) : 53 - 64
  • [44] Distributed Restoration in Optical Networks using Feed-forward Neural Networks
    Demeter Gokisik Karpat
    Semih Bilgen
    [J]. Photonic Network Communications, 2006, 12 (1)
  • [45] A novel implementation of routing attack detection scheme by using fuzzy and feed-forward neural networks
    M. Ezhilarasi
    L. Gnanaprasanambikai
    A. Kousalya
    M. Shanmugapriya
    [J]. Soft Computing, 2023, 27 : 4157 - 4168
  • [46] A novel implementation of routing attack detection scheme by using fuzzy and feed-forward neural networks
    Ezhilarasi, M.
    Gnanaprasanambikai, L.
    Kousalya, A.
    Shanmugapriya, M.
    [J]. SOFT COMPUTING, 2023, 27 (07) : 4157 - 4168
  • [47] A novel activation function for multilayer feed-forward neural networks
    Aboubakar Nasser Samatin Njikam
    Huan Zhao
    [J]. Applied Intelligence, 2016, 45 : 75 - 82
  • [48] Classification of urinary calculi using feed-forward neural networks
    Kuzmanovski, I
    Zdravkova, K
    Trpkovska, M
    [J]. SOUTH AFRICAN JOURNAL OF CHEMISTRY-SUID-AFRIKAANSE TYDSKRIF VIR CHEMIE, 2006, 59 : 12 - 16
  • [49] Exploring Edge TPU for deep feed-forward neural networks
    Hosseininoorbin, Seyedehfaezeh
    Layeghy, Siamak
    Kusy, Brano
    Jurdak, Raja
    Portmann, Marius
    [J]. INTERNET OF THINGS, 2023, 22
  • [50] Dynamic hysteresis modelling using feed-forward neural networks
    Makaveev, D
    Dupré, L
    De Wulf, M
    Melkebeek, J
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 254 : 256 - 258