An electrochemical sensor based on reduced graphene oxide/β-cyclodextrin/multiwall carbon nanotubes/polyoxometalate tetracomponent hybrid: Simultaneous determination of ascorbic acid, dopamine and uric acid

被引:21
|
作者
Ma, Chaonan [1 ]
Xu, Pingping [1 ]
Chen, Hongzhong [2 ]
Cui, Jing [3 ]
Guo, Minjie [1 ]
Zhao, Jin [1 ]
机构
[1] Tianjin Univ Sci & Technol, Coll Chem Engn & Mat Sci, Tianjin Key Lab Brine Chem Engn & Resource Ecoutil, Tianjin 300457, Peoples R China
[2] Sun Yat Sen Univ, Inst Pharmaceut, Sch Pharmaceut Sci Shenzhen, Guangzhou 510275, Peoples R China
[3] Sinopec Shanghai Res Inst Petrochem Technol, Shanghai 201208, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; MWCNT; Polyoxometalate; Cyclodextrin; Electrochemical sensor; EDGE-FUNCTIONALIZED GRAPHENE; MODIFIED ELECTRODE; QUANTUM DOTS; L-TYROSINE; NANOTUBES; COMPOSITE; NANOCOMPOSITE; ELECTROCHEMILUMINESCENCE; PERFORMANCE; FABRICATION;
D O I
10.1016/j.microc.2022.107533
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this work, a novel tetracomponent hybrid electrochemical sensor was constructed with reduced graphene oxide/beta-cyclodextrin/multiwall carbon nanotubes/polyoxometalate (RGO-CD-MWCNT-POM), which achieved simultaneous detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA). First, the RGO-CD-MWCNT-POM was synthesized by assembly of graphene oxide (GO), beta-cyclodextrin (CD), and multiwall carbon nano tube (MWCNT), with subsequent reduction of GO in the assistance of polyoxometalate (POM). Afterward, the morphology and structural properties were characterized by transmission electron microscope (TEM), energy dispersive X-ray mapping (EDS), scanning electron microscope (SEM), Raman spectroscopy, and thermogravimetric analysis (TGA). After its modification on glassy carbon electrode (GCE), RGO-CD-MWCNT-POM could simultaneously detect AA, DA, and UA by voltammetry method. Its enhanced electrochemical sensing performances derive from the combined merits of each component: supramolecular recognition from CD, excellent electronic properties from carbon components, and electrocatalyst from POM. Under optimal conditions, the linear ranges of AA, DA and UA were 5-2000, 0.5-300 and 1-400 mu M with the detection limits with 0.84 mu M, 0.04 mu M, 0.05 mu M, respectively. The proposed sensor was also well applied in practical simultaneous measurement in urine sample with the recovery ranges of 94%similar to 108%. Our work suggests the fabricated sensor is promising for constructing excellent sensing platform.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Construction of cationic polyfluorinated azobenzene/reduced graphene oxide for simultaneous determination of dopamine, uric acid and ascorbic acid
    Wu, Shining
    Wang, Haoran
    Zhao, Bo
    Cao, Tongtong
    Ma, Juanjuan
    Liu, Lin
    Tong, Zhiwei
    TALANTA, 2022, 237
  • [22] Simultaneous and sensitive determination of ascorbic acid, dopamine and uric acid via an electrochemical sensor based on PVP-graphene composite
    Yiyong Wu
    Peihong Deng
    Yaling Tian
    Jinxia Feng
    Jingyun Xiao
    Junhua Li
    Jun Liu
    Guangli Li
    Quanguo He
    Journal of Nanobiotechnology, 18
  • [23] Simultaneous and sensitive determination of ascorbic acid, dopamine and uric acid via an electrochemical sensor based on PVP-graphene composite
    Wu, Yiyong
    Deng, Peihong
    Tian, Yaling
    Feng, Jinxia
    Xiao, Jingyun
    Li, Junhua
    Liu, Jun
    Li, Guangli
    He, Quanguo
    JOURNAL OF NANOBIOTECHNOLOGY, 2020, 18 (01)
  • [24] Simultaneous determination of ascorbic acid, dopamine, and uric acid with a highly selective and sensitive reduced graphene oxide/polypyrrole-platinum nanocomposite modified electrochemical sensor
    Darabi, Rozhin
    Karimi-Maleh, Hassan
    Akin, Merve
    Arikan, Kubilay
    Zhang, Zhouxiang
    Bayat, Ramazan
    Bekmezci, Muhammed
    Sen, Fatih
    ELECTROCHIMICA ACTA, 2023, 457
  • [25] A novel electrochemical biosensor based on hemin functionalized graphene oxide sheets for simultaneous determination of ascorbic acid, dopamine and uric acid
    Zou, Hao Lin
    Li, Bang Lin
    Luo, Hong Qun
    Li, Nian Bing
    SENSORS AND ACTUATORS B-CHEMICAL, 2015, 207 : 535 - 541
  • [26] SIMULTANEOUS ELECTROCHEMICAL DETECTION OF ASCORBIC ACID, DOPAMINE, AND URIC ACID AT MAGNETIC NANOPARTICLES/REDUCED GRAPHENE OXIDE MODIFIED ELECTRODE
    Rosli, Azleen Rashidah Mohd
    Yusoff, Farhanini
    Loh, Saw Hong
    Yusoff, Hanis Mohd
    Jamil, Muhammad Mahadi Abdul
    Shamsudin, Shazrul Hasry
    JURNAL TEKNOLOGI-SCIENCES & ENGINEERING, 2021, 83 (03): : 85 - 92
  • [27] A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid
    Liwen Xing
    Zhanfang Ma
    Microchimica Acta, 2016, 183 : 257 - 263
  • [28] A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid
    Xing, Liwen
    Ma, Zhanfang
    MICROCHIMICA ACTA, 2016, 183 (01) : 257 - 263
  • [29] Design and Fabrication of NiMn Layered Double Hydroxide/Reduced Graphene Oxide as Electrochemical Sensor for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid
    Zhang, Jiazheng
    Cao, Tongtong
    Zhou, Yicheng
    Dong, Li
    Zhang, Haitao
    Liu, Lin
    Tong, Zhiwei
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2024, 34 (8) : 3660 - 3674
  • [30] A Carbon-Black-Doped Molybdenite-Based Electrochemical Sensor for Simultaneous Determination of Uric Acid, Dopamine, and Ascorbic Acid
    Ma, Tingting
    Wang, Yue
    Hasebe, Yasushi
    Zhang, Zhiqiang
    CHEMISTRYSELECT, 2023, 8 (18):