Electrical characterization of top-gated molybdenum disulfide field-effect-transistors with high-k dielectrics

被引:26
|
作者
Bolshakov, Pavel [1 ]
Zhao, Peng [1 ]
Azcatl, Angelica [1 ]
Hurley, Paul K. [2 ]
Wallace, Robert M. [1 ]
Young, Chadwin D. [1 ]
机构
[1] Univ Texas Dallas, Dept Mat Sci & Engn, 800 West Campbell Rd, Richardson, TX 75080 USA
[2] Univ Coll Cork, Tyndall Natl Inst, Lee Maltings Complex, Cork, Ireland
基金
美国国家科学基金会;
关键词
MoS2; Top-gated transistor; HfO2; Al2O3; High-k; Substrate; HIGH-PERFORMANCE; MOS2; HFO2;
D O I
10.1016/j.mee.2017.04.045
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High quality HfO2 and Al2O3 substrates are fabricated in order to study their impact on top-gate MoS2 transistors. Compared with top-gate MoS2 FETs on a SiO2 substrate, the field effect mobility decreased for devices on HfO2 substrates but substantially increased for devices on Al2O3 substrates, possibly due to substrate surface roughness. A forming gas anneal is found to enhance device performance due to a reduction in charge trap density of the high-k substrates. The major improvements in device performance are ascribed to the forming gas anneal. Top-gate devices built upon Al2O3 substrates exhibit a near-ideal subthreshold swing (SS) of-69 mV/dec and a -10x increase in field effect mobility, indicating a positive influence on top-gate device performance even without any backside bias. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 193
页数:4
相关论文
共 50 条
  • [41] Top-Gated Graphene Field-Effect Transistors Using Graphene on Si (111) Wafers
    Moon, J. S.
    Curtis, D.
    Bui, S.
    Marshall, T.
    Wheeler, D.
    Valles, I.
    Kim, S.
    Wang, E.
    Weng, X.
    Fanton, M.
    IEEE ELECTRON DEVICE LETTERS, 2010, 31 (11) : 1193 - 1195
  • [42] RF performance of top-gated, zero-bandgap graphene field-effect transistors
    Meric, Inanc
    Baklitskaya, Natalia
    Kim, Philip
    Shepard, Kenneth L.
    IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2008, TECHNICAL DIGEST, 2008, : 513 - +
  • [43] A Compact Electrical Modelling for Top-Gated Doped Graphene Field-Effect Transistor
    Upadhyay, Abhishek Kumar
    Chauhan, Nitesh
    Vishvakarma, S. K.
    IETE JOURNAL OF RESEARCH, 2018, 64 (03) : 317 - 323
  • [44] Polymer Dielectrics and Orthogonal Solvent Effects for High-Performance Inkjet-Printed Top-Gated P-Channel Polymer Field-Effect Transistors
    Baeg, Kang-Jun
    Khim, Dongyoon
    Jung, Soon-Won
    Koo, Jae Bon
    You, In-Kyu
    Nah, Yoon-Chae
    Kim, Dong-Yu
    Noh, Yong-Young
    ETRI JOURNAL, 2011, 33 (06) : 887 - 896
  • [45] Electrical Field Dependence of Data Retention In High-k Interpoly Dielectrics
    Chung, Chun-Hyung
    Lim, Seung-Hyun
    Lim, Sang-Wook
    Kim, Young-Sun
    Choi, S. Y.
    Moon, Joo-Tae
    2009 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, VOLS 1 AND 2, 2009, : 280 - 283
  • [46] High-k InGaAs metal-oxide-semiconductor field-effect-transistors with various barrier layer materials
    Xue, Fei
    Zhao, Han
    Chen, Yen-Ting
    Wang, Yanzhen
    Zhou, Fei
    Lee, Jack C.
    APPLIED PHYSICS LETTERS, 2011, 99 (03)
  • [47] Electrical Characterization of Metal Gate/High-k Dielectrics on GaAs Substrate
    Budhraja, V.
    Misra, D.
    PHYSICS AND TECHNOLOGY OF HIGH-K GATE DIELECTRICS 6, 2008, 16 (05): : 455 - 461
  • [48] Non-contact thickness and electrical characterization of high-k dielectrics
    Bello, AF
    Kher, S
    Marinskiy, D
    CHARACTERIZATION AND METROLOGY FOR ULSI TECHNOLOGY 2000, INTERNATIONAL CONFERENCE, 2001, 550 : 169 - 172
  • [49] Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics
    Javey, A
    Guo, J
    Farmer, DB
    Wang, Q
    Wang, DW
    Gordon, RG
    Lundstrom, M
    Dai, HJ
    NANO LETTERS, 2004, 4 (03) : 447 - 450