Temperature dependence mitigation in stationary Fourier-transform on-chip spectrometers

被引:41
|
作者
Herrero-Bermello, Alaine [1 ]
Velasco, Aitor V. [1 ]
Podmore, Hugh [2 ]
Cheben, Pavel [3 ]
Schmid, Jens H. [3 ]
Janz, Siegfried [3 ]
Calvo, Maria L. [4 ]
Xu, Dan-Xia [3 ]
Scott, Alan [5 ]
Corredera, Pedro [1 ]
机构
[1] Spanish Natl Res Council, Inst Opt, Madrid 28006, Spain
[2] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada
[3] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada
[4] Univ Complutense Madrid, Fac Phys, Madrid 28040, Spain
[5] Honeywell Aerosp, Kanata, ON, Canada
基金
欧盟地平线“2020”;
关键词
WAVE-GUIDES; SILICON; GRATINGS;
D O I
10.1364/OL.42.002239
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present two techniques for mitigating the effects of temperature drifts in waveguide spatial heterodyne Fourier-transform on-chip spectrometers. In high-resolution devices, large optical path length differences result in an increased sensitivity to temperature variations and impose stringent requirements on the thermal stabilization system. In order to overcome this limitation, here we experimentally demonstrate two new temperature mitigation techniques based on a temperature-sensitive calibration and phase error correction. The spectrometer chip under analysis comprises an array of 32 Mach-Zehnder interferometers fabricated on a silicon-on-insulator platform. The optical path delays are implemented as microphotonic spirals of linearly increasing length up to 3.779 cm, yielding a spectral resolution of 17 pm. We demonstrate that the degradation in retrieved spectra caused by temperature drift is effectively eliminated by temperature-sensitive calibration and phase error correction. (C) 2017 Optical Society of America
引用
收藏
页码:2239 / 2242
页数:4
相关论文
共 50 条
  • [41] Spaceborne infrared Fourier-transform spectrometers for temperature and humidity sounding of the Earth's atmosphere
    Golovin, Yu. M.
    Zavelevich, F. S.
    Nikulin, A. G.
    Kozlov, D. A.
    Monakhov, D. O.
    Kozlov, I. A.
    Arkhipov, S. A.
    Tselikov, V. A.
    Romanovskii, A. S.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2014, 50 (09) : 1004 - 1015
  • [42] All-Silicon Double-Cavity Fourier-Transform Infrared Spectrometer On-Chip
    Eltagoury, Yomna M.
    Sabry, Yasser M.
    Khalil, Diaa A.
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (10)
  • [43] Predictive analog-to-digital converter for Fourier-transform spectrometers
    Deschenes, Jean-Daniel
    Potvin, Simon
    Ash, Jean-Simon
    Genest, Jerome
    APPLIED OPTICS, 2010, 49 (26) : 4883 - 4889
  • [44] Radiometry in line-shape modeling of Fourier-transform spectrometers
    Desbiens, R
    Genest, J
    Tremblay, P
    APPLIED OPTICS, 2002, 41 (07) : 1424 - 1432
  • [45] A procedure for testing the radiometric accuracy of fourier-transform infrared spectrometers
    Zhang, ZM
    Hanssen, LM
    Hsia, JJ
    Datla, RU
    Zhu, CJ
    Griffiths, PR
    MIKROCHIMICA ACTA, 1997, : 315 - 316
  • [46] CONVERSION OF A-60 NMR SPECTROMETERS TO FOURIER-TRANSFORM OPERATION
    TOMKIEWICZ, M
    HORSLEY, WJ
    KLEIN, MP
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1975, 46 (08): : 1112 - 1115
  • [47] Impact of the optical aberrations on the line shape of Fourier-transform spectrometers
    Genest, J
    Tremblay, P
    VIBRATIONAL SPECTROSCOPY, 2002, 29 (1-2) : 3 - 13
  • [48] The Design of On-chip Digital Fourier Transform Spectrometer
    Yu, Jiarui
    Wang, Weiping
    Cao, Jun
    Guoyu, Heyang
    Hu, Xiaoyan
    SEVENTH ASIA PACIFIC CONFERENCE ON OPTICS MANUFACTURE (APCOM 2021), 2022, 12166
  • [49] On-Chip Digital Fourier-Transform Spectrometer Using a Thermo-Optical Michelson Grating Interferometer
    Soref, Richard A.
    De Leonardis, Francesco
    Passaro, Vittorio M. N.
    Fainman, Yeshaiahu
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (22) : 5160 - 5167
  • [50] Research Progress on On-Chip Fourier Transform Spectrometer
    Zhang, Lichao
    Chen, Jiamin
    Ma, Chaowei
    Li, Wangzhe
    Qi, Zhimei
    Xue, Ning
    LASER & PHOTONICS REVIEWS, 2021, 15 (09)