Graphs with no induced K2,t

被引:4
|
作者
Illingworth, Freddie [1 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge, England
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2021年 / 28卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
NUMBER;
D O I
10.37236/9223
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a graph G on n vertices with alpha((n)(2)) edges which does not contain an induced K-2,K-t (t >= 2). How large must alpha be to ensure that G contains, say, a large clique or some fixed subgraph H? We give results for two regimes: for alpha bounded away from zero and for alpha = o(1). Our results for alpha = o(1) are strongly related to the Induced Turan numbers which were recently introduced by Loh, Tait, Timmons and Zhou. For alpha bounded away from zero, our results can be seen as a generalisation of a result of Gyarfas, Hubenko and Solymosi and more recently Holmsen (whose argument inspired ours).
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [21] Synthetic marijuana "K2'' induced ITP
    Ozturk, Erman
    Oral, Alihan
    Ozdemir, Melek
    Bambul, Nail
    PLATELETS, 2015, 26 (03) : 258 - 259
  • [22] Extensions of the D(∓k2)-triples {k2, k2 ± 1, 4k2 ± 1}
    Yasutsugu Fujita
    Periodica Mathematica Hungarica, 2009, 59 : 81 - 98
  • [23] EXTENSIONS OF THE D(∓k2)-TRIPLES {k2, k2 ± 1, 4k2 ± 1}
    Fujita, Yasutsugu
    PERIODICA MATHEMATICA HUNGARICA, 2009, 59 (01) : 81 - 98
  • [24] On the Ramsey numbers r(K2,n-1, K2,n) and r(K2,n, K2,n)
    Lortz, R
    Mengersen, I
    UTILITAS MATHEMATICA, 2002, 61 : 87 - 95
  • [25] Uniformly resolvable decompositions of Kv into K2 and K1,3 graphs
    Chen, Fen
    Cao, Haitao
    DISCRETE MATHEMATICS, 2016, 339 (08) : 2056 - 2062
  • [26] Constructing trees in graphs whose complement has no K2,s
    Dobson, E
    COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (04): : 343 - 347
  • [28] 方程k_t=k2(kθθ+k)的不变群
    何梅
    淮阴师范学院学报(自然科学版), 2008, (01) : 9 - 11
  • [29] Forbidding K2,t traces in triple systems
    Luo, Ruth
    Spiro, Sam
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [30] The edge-density for K2,t minors
    Chudnovsky, Maria
    Reed, Bruce
    Seymour, Paul
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2011, 101 (01) : 18 - 46