The factorization of a q-difference equation for continuous q-Hermite polynomials

被引:8
|
作者
Atakishiyev, M. N. [1 ]
Klimyk, A. U.
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Cuernavaca 62210, Morelos, Mexico
[2] Bogolyubov Inst Theoret Phys, UA-03143 Kiev, Ukraine
关键词
D O I
10.1088/1751-8113/40/31/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We argue that a customary q-difference equation for the continuous q-Hermite polynomials H-n(x vertical bar q) can be written in the factorized form as [ (D-x(q))(2) - 1] H-n(x vertical bar q) = (q(-)n - 1)H-n(x vertical bar q), where D-x(q) is some explicitly known q-difference operator. This means that the polynomials H-n(x vertical bar q) are in fact governed by the q-difference equation D-x(q) H-n(x vertical bar q) = q(-n/)2 H-n(x vertical bar q), which is simpler than the conventional one. It is shown that a similar factorization holds for the continuous q(-1)-Hermite polynomials h(n)(x vertical bar q).
引用
收藏
页码:9311 / 9317
页数:7
相关论文
共 50 条
  • [21] THE Q-BOSON OPERATOR ALGEBRA AND Q-HERMITE POLYNOMIALS
    VANDERJEUGT, J
    LETTERS IN MATHEMATICAL PHYSICS, 1992, 24 (04) : 267 - 274
  • [22] Bivariate continuous q-Hermite polynomials and deformed quantum Serre relations
    Casper, W. Riley
    Kolb, Stefan
    Yakimov, Milen
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (01)
  • [23] On 2-variable q-Hermite polynomials
    Raza, Nusrat
    Fadel, Mohammed
    Nisar, Kottakkaran Sooppy
    Zakarya, M.
    AIMS MATHEMATICS, 2021, 6 (08): : 8705 - 8727
  • [24] CERTAIN ADVANCEMENTS IN MULTIDIMENSIONAL q-HERMITE POLYNOMIALS
    Wani, Shahid ahmad
    Riyasat, Mumtaz
    Khan, Subuhi
    Ramirez, William
    REPORTS ON MATHEMATICAL PHYSICS, 2024, 94 (01) : 117 - 141
  • [25] Fourier-Gauss transforms of the continuous big q-Hermite polynomials
    Atakishiyeva, MK
    Atakishiyev, NM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (16): : L559 - L565
  • [26] ON THE LIMIT OF DISCRETE q-HERMITE I POLYNOMIALS
    Alwhishi, Sakina
    Adiguzel, Rezan Sevinik
    Turan, Mehmet
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02): : 2272 - 2282
  • [27] Deformed algebras, q-hermite polynomials and q-Bessel functions
    Srinivasan, V
    Chaturvedi, S
    FRONTIERS OF FUNDAMENTAL PHYSICS 4, 2001, : 217 - 221
  • [28] A q-Difference Equation and Fourier Series Expansions of q-Lidstone Polynomials
    Al-Towailb, Maryam
    SYMMETRY-BASEL, 2022, 14 (04):
  • [29] Entire solutions of q-difference equations and value distribution of q-difference polynomials
    Zhang, Jilong
    Yang, Lianzhong
    ANNALES POLONICI MATHEMATICI, 2013, 109 (01) : 39 - 46
  • [30] HECKE MODULAR-FORMS AND Q-HERMITE POLYNOMIALS
    BRESSOUD, DM
    ILLINOIS JOURNAL OF MATHEMATICS, 1986, 30 (01) : 185 - 196