Ricci curvature of slant submanifolds in (k, μ)-contact space forms

被引:0
|
作者
Shukla, S. S. [1 ]
Tiwari, Sanjay Kumar [1 ]
机构
[1] Univ Allahabad, Dept Math, Allahabad 211002, Uttar Pradesh, India
来源
关键词
Mean curvature; sectional curvature; scalar curvature; s-Ricci curvature; slant submanifold; semi-slant submanifold; bi-slant submanifold; (k; mu)-contact space form; MANIFOLDS;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
B.Y. Chen (1999) established a clear relationship involving intrinsic invariants, namely the sectional curvature and the scalar curvature and the main extrinsic invariants, namely the squared mean curvature for a submanifold in real space form with arbitrary co-dimension. In this article, we establish inequalities between the Ricci curvature and the squared mean curvature, and also between the s-Ricci curvature and the scalar curvature for a slant, semi-slant and bi-slant submanifolds in (k,mu)-contact space forms.
引用
收藏
页码:31 / 49
页数:19
相关论文
共 50 条