Mean curvature;
sectional curvature;
scalar curvature;
s-Ricci curvature;
slant submanifold;
semi-slant submanifold;
bi-slant submanifold;
(k;
mu)-contact space form;
MANIFOLDS;
D O I:
暂无
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
B.Y. Chen (1999) established a clear relationship involving intrinsic invariants, namely the sectional curvature and the scalar curvature and the main extrinsic invariants, namely the squared mean curvature for a submanifold in real space form with arbitrary co-dimension. In this article, we establish inequalities between the Ricci curvature and the squared mean curvature, and also between the s-Ricci curvature and the scalar curvature for a slant, semi-slant and bi-slant submanifolds in (k,mu)-contact space forms.
机构:
Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, POB 65892, Riyadh 11566, Saudi ArabiaImam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, POB 65892, Riyadh 11566, Saudi Arabia
Al-Dayel, Ibrahim
Khan, Meraj Ali
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tabuk, Dept Math, Tabuk, Saudi ArabiaImam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, POB 65892, Riyadh 11566, Saudi Arabia
机构:
Princess Nourah Bint Abdulrahman Univ, Fac Sci, Math Sci Dept, Riyadh 11546, Saudi ArabiaPrincess Nourah Bint Abdulrahman Univ, Fac Sci, Math Sci Dept, Riyadh 11546, Saudi Arabia
Mofarreh, Fatemah
论文数: 引用数:
h-index:
机构:
Ali, Akram
Alluhaibi, Nadia
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Sci & Arts Coll, Dept Math, Rabigh Campus, Jeddah 21589, Saudi ArabiaPrincess Nourah Bint Abdulrahman Univ, Fac Sci, Math Sci Dept, Riyadh 11546, Saudi Arabia
Alluhaibi, Nadia
Belova, Olga
论文数: 0引用数: 0
h-index: 0
机构:
Immanuel Kant Baltic Fed Univ, Inst Phys & Math Sci & IT, 5A Nevskogo St 14, Kaliningrad 236016, RussiaPrincess Nourah Bint Abdulrahman Univ, Fac Sci, Math Sci Dept, Riyadh 11546, Saudi Arabia