Fast Decomposition of Large Nonnegative Tensors

被引:36
|
作者
Cohen, Jeremy [1 ]
Farias, Rodrigo Cabral [1 ]
Comon, Pierre [1 ]
机构
[1] CNRS, Images & Signal Dept, GIPSA Lab, F-38402 St Martin Dheres, France
关键词
Big Data; compression; CP decomposition; HOSVD; nonnegative; PARAFAC; tensor; PARALLEL FACTOR-ANALYSIS; MATRIX;
D O I
10.1109/LSP.2014.2374838
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In signal processing, tensor decompositions have gained in popularity this last decade. In the meantime, the volume of data to be processed has drastically increased. This calls for novel methods to handle Big Data tensors. Since most of these huge data are issued from physical measurements, which are intrinsically real nonnegative, being able to compress nonnegative tensors has become mandatory. Following recent works on HOSVD compression for Big Data, we detail solutions to decompose a nonnegative tensor into decomposable terms in a compressed domain.
引用
收藏
页码:862 / 866
页数:5
相关论文
共 50 条
  • [41] A New Estimate for the Spectral Radius of Nonnegative Tensors
    Cui, Jingjing
    Peng, Guohua
    Lu, Quan
    Huang, Zhengge
    FILOMAT, 2018, 32 (10) : 3409 - 3418
  • [42] Perron-Frobenius theorem for nonnegative tensors
    Chang, K. C.
    Pearson, Kelly
    Zhang, Tan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2008, 6 (02) : 507 - 520
  • [43] New bounds for the spectral radius for nonnegative tensors
    Li, Lixia
    Li, Chaoqian
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [44] DETERMINING SEMANTIC VALENCES OF ONTOLOGY CONCEPTS BY MEANS OF NONNEGATIVE FACTORIZATION OF TENSORS OF LARGE TEXT CORPORA
    Anisimov, A. V.
    Marchenko, O. O.
    Vozniuk, T. G.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2014, 50 (03) : 327 - 337
  • [45] A new bound for the spectral radius of nonnegative tensors
    Suhua Li
    Chaoqian Li
    Yaotang Li
    Journal of Inequalities and Applications, 2017
  • [46] Sharp Bounds for the Spectral Radii of Nonnegative Tensors
    Chuang Lü
    Lihua You
    Yufei Huang
    Frontiers of Mathematics, 2023, 18 : 883 - 901
  • [47] An algorithm for computing the spectral radius of nonnegative tensors
    Qilong Liu
    Zhen Chen
    Computational and Applied Mathematics, 2019, 38
  • [48] A new bound for the spectral radius of nonnegative tensors
    Li, Suhua
    Li, Chaoqian
    Li, Yaotang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [49] Some bounds for the spectral radius of nonnegative tensors
    Li, Wen
    Ng, Michael K.
    NUMERISCHE MATHEMATIK, 2015, 130 (02) : 315 - 335
  • [50] Spectral Inequalities for Nonnegative Tensors and Their Tropical Analogues
    Friedland, Shmuel
    Gaubert, Stephane
    VIETNAM JOURNAL OF MATHEMATICS, 2020, 48 (04) : 893 - 928