Nonlinear Dimensionality Reduction of Hyperspectral Data Using Spectral Correlation as a Similarity Measure

被引:0
|
作者
Myasnikov, Evgeny [1 ]
机构
[1] Samara Univ, 34 Moskovskoye Shosse, Samara 443086, Russia
基金
俄罗斯基础研究基金会;
关键词
Hyperspectral image; Spectral correlation Nonlinear dimensionality reduction; Nonlinear mapping Principal component analysis; IMAGERY;
D O I
10.1007/978-3-319-73013-4_22
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a novel dimensionality reduction method, which is based on the principle of preserving the pairwise spectral correlation measures. For the proposed method, we introduce the corresponding quality measure, and derive the numerical optimization algorithm based on a stochastic gradient descent technique. We provide the results of the experimental study that compares the method to the principal component analysis method using well-known hyperspectral scenes. The results of the study show that the proposed method can be successfully applied to process hyperspectral images.
引用
收藏
页码:237 / 244
页数:8
相关论文
共 50 条
  • [21] Nonlinear dimensionality reduction in climate data
    Gámez, AJ
    Zhou, CS
    Timmermann, A
    Kurths, J
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2004, 11 (03) : 393 - 398
  • [22] Dimensionality Reduction of Hyperspectral Images Using Pooling
    Arati Paul
    Nabendu Chaki
    [J]. Pattern Recognition and Image Analysis, 2019, 29 : 72 - 78
  • [23] SPATIAL-SPECTRAL GRAPH-BASED NONLINEAR EMBEDDING DIMENSIONALITY REDUCTION FOR HYPERSPECTRAL IMAGE CLASSIFICAITON
    Zhang, Xiangrong
    Han, Yaru
    Huyan, Ning
    Li, Chen
    Feng, Jie
    Gao, Li
    Ma, Xiaoxiao
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8472 - 8475
  • [24] Data visualization by nonlinear dimensionality reduction
    Gisbrecht, Andrej
    Hammer, Barbara
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2015, 5 (02) : 51 - 73
  • [25] Dimensionality reduction and visualisation of hyperspectral ink data using t-SNE
    Devassy, Binu Melit
    George, Sony
    [J]. FORENSIC SCIENCE INTERNATIONAL, 2020, 311
  • [26] Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction
    Bruce, LM
    Koger, CH
    Li, J
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (10): : 2331 - 2338
  • [27] Dimensionality reduction of hyperspectral imaging data using local principal components transforms
    Manolakis, D
    Marden, D
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY X, 2004, 5425 : 393 - 401
  • [28] Marginal discriminant analysis using support vectors for dimensionality reduction of hyperspectral data
    Kianisarkaleh, Azadeh
    Ghassemian, Hassan
    [J]. REMOTE SENSING LETTERS, 2016, 7 (12) : 1160 - 1169
  • [29] Empirical mode decomposition for dimensionality reduction of hyperspectral data
    Wu, KL
    Hsieh, PF
    [J]. IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 1241 - 1244
  • [30] Dimensionality reduction of hyperspectral data based on ISOMAP algorithm
    Dong Guangjun
    Zhang Yongsheng
    Song, Ji
    [J]. ICEMI 2007: PROCEEDINGS OF 2007 8TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL III, 2007, : 935 - +