Reproducibility Analysis of Scientific Workflows

被引:4
|
作者
Banati, Anna [3 ]
Kacsuk, Peter [1 ,2 ]
Kozlovszky, Miklos [1 ,3 ]
机构
[1] MTA SZTAKI, Pf 63, H-1518 Budapest, Hungary
[2] Univ Westminster, 115 New Cavendish St, London W1W 6UW, England
[3] Obuda Univ, John von Neumann Fac Informat, Becsi Ut 96-B, H-1034 Budapest, Hungary
关键词
scientific workflows; reproducibility; analytical model; provenance; evaluation; gUSE;
D O I
10.12700/APH.14.2.2017.2.11
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Scientific workflows are efficient tools for specifying and automating compute and data intensive in-silico experiments. An important challenge related to their usage is their reproducibility. In order to make it reproducible, many factors have to be investigated which can influence and even prevent this process: the missing descriptions and samples; the missing provenance data about the environmental parameters and the data dependencies; the dependencies of executions which are based on special hardware, changing or volatile third party services or random generated values. Some of these factors (called dependencies) can be eliminated by careful design or by huge resource usage but most of them cannot be bypassed. Our investigation deals with the critical dependencies of execution. In this paper we set up a mathematical model to evaluate the results of the workflow in addition we provide a mechanism to make the workflow reproducible based on provenance data and statistical tools.
引用
收藏
页码:201 / 217
页数:17
相关论文
共 50 条
  • [31] Contextualization of Scientific Workflows
    Brezillon, Patrick
    MODELING AND USING CONTEXT, 2011, 6967 : 40 - 53
  • [32] The future of scientific workflows
    Deelman, Ewa
    Peterka, Tom
    Altintas, Ilkay
    Carothers, Christopher D.
    van Dam, Kerstin Kleese
    Moreland, Kenneth
    Parashar, Manish
    Ramakrishnan, Lavanya
    Taufer, Michela
    Vetter, Jeffrey
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2018, 32 (01): : 159 - 175
  • [33] Performance analysis and data reduction for exascale scientific workflows
    Kelly, Christopher
    Xu, Wei
    Pouchard, Line C.
    Van Dam, Hubertus
    Islam, Tanzima Z.
    Yoo, Shinjae
    Van Dam, Kerstin Kleese
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2025,
  • [34] Characterization of Scientific Workflows
    Bharathi, Shishir
    Chervenak, Ann
    Deelman, Ewa
    Mehta, Gaurang
    Su, Mei-Hui
    Vahi, Karan
    2008 THIRD WORKSHOP ON WORKFLOWS IN SUPPORT OF LARGE-SCALE SCIENCE (WORKS 2008), 2008, : 11 - 20
  • [35] Scientific Workflows for the Enterprise
    Jarman, Alonzo
    2009 IEEE CONGRESS ON SERVICES (SERVICES-1 2009), VOLS 1 AND 2, 2009, : 360 - 363
  • [36] Scientific Workflows for Bibliometrics
    Guler, Arzu Tugce
    Waaijer, Cathelijn J. F.
    Palmblad, Magnus
    PROCEEDINGS OF ISSI 2015 ISTANBUL: 15TH INTERNATIONAL SOCIETY OF SCIENTOMETRICS AND INFORMETRICS CONFERENCE, 2015, : 1029 - 1034
  • [37] Evolutionary Scientific Workflows
    Serra da Cruz, Sergio Manuel
    de Oliveira, Anderson
    de Faria, Fabricio Firmino
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 2219 - 2226
  • [38] Scientific workflows and xmdd
    Lamprecht, Anna-Lena
    Margaria, Tiziana
    Communications in Computer and Information Science, 2014, 500 : 1 - 13
  • [39] Scientific Workflows in Astronomy
    Schaaff, Andre
    Verdes-Montenegro, L.
    Ruiz, J. E.
    Santander-Vela, J.
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXI, 2012, 461 : 875 - +
  • [40] Views on Scientific Workflows
    Sonntag, Mirko
    Goerlach, Katharina
    Karastoyanova, Dimka
    Leymann, Frank
    Malets, Polina
    Schumm, David
    PERSPECTIVES IN BUSINESS INFORMATICS RESEARCH, 2011, 90 : 321 - 335