Three-Dimensional Cubic Barcodes

被引:0
|
作者
Elhami, Golnoosh [1 ]
Scholefield, Adam [1 ,2 ]
Vetterli, Martin [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland
[2] We Play Sport, CH-1005 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Attenuation; X-rays; Image color analysis; Image coding; Shape; Reconstruction algorithms; Laser beams; Rectangular cuboid barcodes; cubic barcode; Reed-Solomon; parallel-beam scanner; cone-beam scanner; orthogonal projection; central projection; noise robustness; CODES;
D O I
10.1109/TIP.2021.3120049
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider three-dimensional cubic barcodes, consisting of smaller cubes, each built from one of two possible materials and carry one bit of information. To retrieve the information stored in the barcode, we measure a 2D projection of the barcode using a penetrating wave such as X-rays, either using parallel-beam or cone-beam scanners from an unknown direction. We derive a theoretical representation of this scanning process and show that for a known barcode pose with respect to the scanner, the projection operator is linear and can be easily inverted. Moreover, we provide a method to estimate the unknown pose of the barcode from a single 2D scan. We also propose coding schemes to correct errors and ambiguities in the reconstruction process. Finally, we test our designed barcode and reconstruction algorithms with several simulations, as well as a real-world barcode acquired with an X-ray cone-beam scanner, as a proof of concept.
引用
收藏
页码:3166 / 3181
页数:16
相关论文
共 50 条
  • [31] Average structure of cubic lazurite with a three-dimensional incommensurate modulation
    R. K. Rastsvetaeva
    N. B. Bolotina
    A. N. Sapozhnikov
    A. A. Kashaev
    A. Schoenleber
    G. Chapuis
    Crystallography Reports, 2002, 47 : 404 - 407
  • [32] Complete three-dimensional photonic bandgap in a simple cubic structure
    Lin, SY
    Fleming, JG
    Lin, R
    Sigalas, MM
    Biswas, R
    Ho, KM
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2001, 18 (01) : 32 - 35
  • [33] Cubic three-dimensional hybrid silica solids for nuclear hyperpolarization
    Baudouin, D.
    van Kalkeren, H. A.
    Bornet, A.
    Vuichoud, B.
    Veyre, L.
    Cavailles, M.
    Schwarzwaelder, M.
    Liao, W. -C.
    Gajan, D.
    Bodenhausen, G.
    Emsley, L.
    Lesage, A.
    Jannin, S.
    Coperet, C.
    Thieuleux, C.
    CHEMICAL SCIENCE, 2016, 7 (11) : 6846 - 6850
  • [34] Three-Dimensional Hopf Bifurcation for a Class of Cubic Kolmogorov Model
    Du Chaoxiong
    Wang Qinlong
    Huang Wentao
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (03):
  • [35] Three-dimensional visualization of human brain tumors using the CUBIC technique
    Xu, Yangyang
    He, Qi
    Wang, Mengqi
    Wu, Yang
    Shi, Yifeng
    Wang, Wei
    Zhang, Jie
    BRAIN TUMOR PATHOLOGY, 2023, 40 (01) : 4 - 14
  • [36] Experimental study on the packing of cubic particles under three-dimensional vibration
    Xie, Zhouzun
    An, Xizhong
    Wu, Yongli
    Wang, Lin
    Qian, Quan
    Yang, Xiaohong
    POWDER TECHNOLOGY, 2017, 317 : 13 - 22
  • [37] Bandgap engineering of three-dimensional phononic crystals in a simple cubic lattice
    Lucklum, Frieder
    Vellekoop, Michael J.
    APPLIED PHYSICS LETTERS, 2018, 113 (20)
  • [38] Three-Dimensional Spherical-Shaped UPML for FDTD with Cubic Lattices
    Wang, Lu
    Wang, Mengjun
    Zhang, Kanglong
    Cui, Wenjie
    Zheng, Hongxing
    Li, Erping
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2019, 34 (03): : 475 - 482
  • [39] Critical properties of the three-dimensional frustrated Ising model on a cubic lattice
    A. K. Murtazaev
    I. K. Kamilov
    M. K. Ramazanov
    Physics of the Solid State, 2005, 47 : 1163 - 1168
  • [40] Random sequential adsorption of lattice animals on a three-dimensional cubic lattice
    Loncarevic, I
    Budinski-Petkovic, Lj
    Scepanovic, J. R.
    Jaksic, Z. M.
    Vrhovac, S. B.
    PHYSICAL REVIEW E, 2020, 101 (01)