Discrete Approximation by a Dirichlet Series Connected to the Riemann Zeta-Function

被引:4
|
作者
Laurincikas, Antanas [1 ]
Siauciunas, Darius [2 ]
机构
[1] Vilnius Univ, Fac Math & Informat, Inst Math, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
[2] Vilnius Univ, Siauliai Acad, Reg Dev Inst, P Visinskio Str 25, LT-76351 Shiauliai, Lithuania
关键词
distribution function; Riemann zeta-function; Voronin universality theorem; weak convergence;
D O I
10.3390/math9101073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, a Dirichlet series zeta(uN)(s) whose shifts zeta(uN)(s + ikh), k = 0,1, ..., h > 0, approximate analytic non-vanishing functions defined on the right-hand side of the critical strip is considered. This series is closely connected to the Riemann zeta-function. The sequence u(N) -> infinity and u(N) << N-2 as N -> infinity.
引用
收藏
页数:11
相关论文
共 50 条