Hamilton cycles in sparse robustly expanding digraphs

被引:0
|
作者
Lo, Allan [1 ]
Patel, Viresh [2 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham, W Midlands, England
[2] Univ Amsterdam, Korteweg Vries Inst Wiskunde, NL-1090 GE Amsterdam, Netherlands
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2018年 / 25卷 / 03期
基金
欧洲研究理事会;
关键词
ORIENTED GRAPHS; REGULAR EXPANDERS; DECOMPOSITIONS; TOURNAMENTS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of robust expansion has played a central role in the solution of several conjectures involving the packing of Hamilton cycles in graphs and directed graphs. These and other results usually rely on the fact that every robustly expanding (di)graph with suitably large minimum degree contains a Hamilton cycle. Previous proofs of this require Szemeredi's Regularity Lemma and so this fact can only be applied to dense, sufficiently large robust expanders. We give a proof that does not use the Regularity Lemma and, indeed, we can apply our result to sparser robustly expanding digraphs.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Destroying cycles in digraphs
    Molly Dunkum
    Peter Hamburger
    Attila Pór
    Combinatorica, 2011, 31 : 55 - 66
  • [32] CYCLES IN DIGRAPHS - A SURVEY
    BERMOND, JC
    THOMASSEN, C
    JOURNAL OF GRAPH THEORY, 1981, 5 (01) : 1 - 43
  • [33] ON CYCLES AND PATHS IN DIGRAPHS
    HEYDEMANN, MC
    DISCRETE MATHEMATICS, 1980, 31 (02) : 217 - 219
  • [34] Cycles in dense digraphs
    Maria Chudnovsky
    Paul Seymour
    Blair Sullivan
    Combinatorica, 2008, 28 : 1 - 18
  • [35] Destroying cycles in digraphs
    Dunkum, Molly
    Hamburger, Peter
    Por, Attila
    COMBINATORICA, 2011, 31 (01) : 55 - 66
  • [36] LONG CYCLES IN DIGRAPHS
    THOMASSEN, C
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1981, 42 (MAR) : 231 - 251
  • [37] SHORT CYCLES IN DIGRAPHS
    NISHIMURA, T
    DISCRETE MATHEMATICS, 1988, 72 (1-3) : 295 - 298
  • [38] Majority colorings of sparse digraphs
    Anastos, Michael
    Lamaison, Ander
    Steiner, Raphael
    Szabo, Tibor
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [39] Algorithmic Properties of Sparse Digraphs
    Kreutzer, Stephan
    Muzi, Irene
    de Mendez, Patrice Ossona
    Rabinovich, Roman
    Siebertz, Sebastian
    36TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2019), 2019,
  • [40] Ramsey numbers of sparse digraphs
    Fox, Jacob
    He, Xiaoyu
    Wigderson, Yuval
    ISRAEL JOURNAL OF MATHEMATICS, 2024, 263 (01) : 1 - 48