Hopf (bi-)modules and crossed modules in braided monoidal categories

被引:39
|
作者
Bespalov, Y
Drabant, B
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium
[2] Natl Acad Sci Ukraine, Bogolyubov Inst Theoret Phys, UA-252143 Kiev, Ukraine
关键词
D O I
10.1016/S0022-4049(96)00105-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hopf (bi-)modules and crossed modules over a bialgebra B in a braided monoidal category C are considered. The (braided) monoidal equivalence of both categories is proved provided B is a Hopf algebra (with invertible antipode). Bialgebra projections and Hopf bimodule bialgebras over a Hopf algebra in C are found to be isomorphic categories. A generalization of the Majid-Radford criterion for a braided Hopf algebra to be a cross product is obtained as an application of these results. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:105 / 129
页数:25
相关论文
共 50 条