RTEL-1 Enforces Meiotic Crossover Interference and Homeostasis

被引:134
|
作者
Youds, Jillian L. [1 ]
Mets, David G. [2 ]
McIlwraith, Michael J. [3 ]
Martin, Julie S. [1 ]
Ward, Jordan D. [1 ]
ONeil, Nigel J. [4 ]
Rose, Ann M. [4 ]
West, Stephen C. [3 ]
Meyer, Barbara J. [2 ]
Boulton, Simon J. [1 ]
机构
[1] Canc Res UK, London Res Inst, DNA Damage Response Lab, S Mimms EN6 3LD, Herts, England
[2] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[3] Canc Res UK, London Res Inst, Genet Recombinat Lab, S Mimms EN6 3LD, Herts, England
[4] Univ British Columbia, Fac Med, Dept Med Genet, Vancouver, BC V6T 1Z4, Canada
关键词
CAENORHABDITIS-ELEGANS; STRAND-EXCHANGE; C-ELEGANS; RECOMBINATION; CHROMOSOME; PROTEINS; YEAST;
D O I
10.1126/science.1183112
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Meiotic crossovers (COs) are tightly regulated to ensure that COs on the same chromosome are distributed far apart ( crossover interference, COI) and that at least one CO is formed per homolog pair (CO homeostasis). CO formation is controlled in part during meiotic double-strand break (DSB) creation in Caenorhabditis elegans, but a second level of control must also exist because meiotic DSBs outnumber COs. We show that the anti-recombinase RTEL-1 is required to prevent excess meiotic COs, probably by promoting meiotic synthesis-dependent strand annealing. Two distinct classes of meiotic COs are increased in rtel-1 mutants, and COI and homeostasis are compromised. We propose that RTEL-1 implements the second level of CO control by promoting noncrossovers.
引用
收藏
页码:1254 / 1258
页数:5
相关论文
共 50 条
  • [31] HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis
    Nageswaran, Divyashree C.
    Kim, Jaeil
    Lambing, Christophe
    Kim, Juhyun
    Park, Jihye
    Kim, Eun-Jung
    Cho, Hyun Seob
    Kim, Heejin
    Byun, Dohwan
    Park, Yeong Mi
    Kuo, Pallas
    Lee, Seungchul
    Tock, Andrew J.
    Zhao, Xiaohui
    Hwang, Ildoo
    Choi, Kyuha
    Henderson, Ian R.
    NATURE PLANTS, 2021, 7 (04) : 452 - +
  • [32] HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis
    Divyashree C. Nageswaran
    Jaeil Kim
    Christophe Lambing
    Juhyun Kim
    Jihye Park
    Eun-Jung Kim
    Hyun Seob Cho
    Heejin Kim
    Dohwan Byun
    Yeong Mi Park
    Pallas Kuo
    Seungchul Lee
    Andrew J. Tock
    Xiaohui Zhao
    Ildoo Hwang
    Kyuha Choi
    Ian R. Henderson
    Nature Plants, 2021, 7 : 452 - 467
  • [33] AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization
    Christophorou, Nicolas
    She, Wenjing
    Long, Jincheng
    Hurel, Aurelie
    Beaubiat, Sebastien
    Idir, Yassir
    Tagliaro-Jahns, Marina
    Chambon, Aurelie
    Solier, Victor
    Vezon, Daniel
    Grelon, Mathilde
    Feng, Xiaoqi
    Bouche, Nicolas
    Mezard, Christine
    PLOS GENETICS, 2020, 16 (06):
  • [34] Double Crossed: CDKG1 Regulates Crossover Formation by Stabilizing Meiotic and Somatic Recombination Intermediates
    Hughes, P. William
    PLANT CELL, 2020, 32 (04): : 814 - 815
  • [35] COSA-1 Reveals Robust Homeostasis and Separable Licensing and Reinforcement Steps Governing Meiotic Crossovers
    Yokoo, Rayka
    Zawadzki, Karl A.
    Nabeshima, Kentaro
    Drake, Melanie
    Arur, Swathi
    Villeneuve, Anne M.
    CELL, 2012, 149 (01) : 75 - 87
  • [36] The Xenobiotic Transporter Mdr1 Enforces T Cell Homeostasis in the Presence of Intestinal Bile Acids (vol 47, pg 1182, 2017)
    Cao, Wei
    Kayama, Hisako
    Chen, Mei Lan
    Delmas, Amber
    Sun, Amy
    Kim, Sang Yong
    Rangarajan, Erumbi S.
    McKevitt, Kelly
    Beck, Amanda P.
    Jackson, Cody B.
    Crynen, Gogce
    Oikonomopoulos, Angelos
    Lacey, Precious N.
    Martinez, Gustavo J.
    Izard, Tina
    Lorenz, Robin G.
    Rodriguez-Palacios, Alex
    Cominelli, Fabio
    Abreu, Maria T.
    Hommes, Daniel W.
    Koralov, Sergei B.
    Takeda, Kiyoshi
    Sundrud, Mark S.
    IMMUNITY, 2020, 52 (03) : 571 - 571
  • [37] The Dmc1 recombinase physically interacts with and promotes the meiotic crossover functions of the Mlh1-Mlh3 endonuclease
    Pannafino, Gianno
    Chen, Jun Jie
    Mithani, Viraj
    Payero, Lisette
    Gioia, Michael
    Crickard, J. Brooks
    Alani, Eric
    GENETICS, 2024, 227 (03)
  • [38] Evidence of meiotic crossover control in Saccharomyces cerevisiae through Mec1-mediated phosphorylation of replication protein A
    Bartrand, AJ
    Iyasu, D
    Marinco, SM
    Brush, GS
    GENETICS, 2006, 172 (01) : 27 - 39
  • [39] Natural variation identifies SNI1, the SMC5/6 component, as a modifier of meiotic crossover
    Zhu, Longfei
    Fernandez-Jimenez, Nadia
    Szymanska-Lejman, Maja
    Pele, Alexandre
    Underwood, Charles J.
    Serra, Heidi
    Lambing, Christophe
    Dluzewska, Julia
    Bieluszewski, Tomasz
    Pradillo, Monica
    Henderson, Ian R.
    Ziolkowski, Piotr A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (33)
  • [40] Formation of Different Polyploids Through Disrupting Meiotic Crossover Frequencies Based on cntd1 Knockout in Zebrafish
    Ou, Yuan
    Li, Huilin
    Li, Juan
    Dai, Xiangyan
    He, Jiaxin
    Wang, Shi
    Liu, Qingfeng
    Yang, Conghui
    Wang, Jing
    Zhao, Rurong
    Yin, Zhan
    Shu, Yuqin
    Liu, Shaojun
    MOLECULAR BIOLOGY AND EVOLUTION, 2024, 41 (03)