Periods of 1-motives and transcendence

被引:23
|
作者
Bertolin, C [1 ]
机构
[1] Dept Math, F-67084 Strasbourg, France
关键词
D O I
10.1016/S0022-314X(02)00002-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized Grothendieck's conjecture of periods (CPG)(K) predicts that if M is a 1-motive defined over an algebraically closed subfield K of C, then deg.transc(Q) K(periodes(M)) greater than or equal to dim(Q) MT(M-C). In this article we propose a conjecture of transcendance that we call the elliptico-toric conjecture (CET). Our main result is that (CET) is equivalent to (CPG)K applied to 1-motives defined over K of the kind M = [Z(r) -->(u) Pi(j=1)(n) E-j x G(m)(s)]. (CET) implies some classical conjectures, as the in Schanuel's conjecture or its elliptic analogue, but it implies new conjectures as well. All these conjectures following from (CET) are equivalent to (CPG)K applied to well chosed 1-motives: for example the Schanuel's conjecture is equivalent to (CPG)K applied to I-motives of the kind M [Z(r) -->(u) G(m)(s)]. (C) 2002 Published by Elsevier Science (USA).
引用
收藏
页码:204 / 221
页数:18
相关论文
共 50 条
  • [41] Mumford-Tate groups of 1-motives and Weil pairing
    Bertolin, Cristiana
    Philippon, Patrice
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (10)
  • [42] Monodromy of logarithmic Barsotti-Tate groups attached to 1-motives
    Bertapelle, A
    Candilera, M
    Cristante, V
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2004, 573 : 211 - 234
  • [43] Log p-divisible groups associated with log 1-motives
    Wuerthen, Matti
    Zhao, Heer
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024, 76 (03): : 946 - 983
  • [44] Arithmetic duality theorems for 1-motives (vol 578, pg 93, 2005)
    Harari, David
    Szamuely, Tamas
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 632 : 233 - 236
  • [45] The Galois Module Structure of l-adic Realizations of Picard 1-motives and Applications
    Greither, Cornelius
    Popescu, Cristian D.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (05) : 986 - 1036
  • [46] Transcendence of periods: The state of the art
    Waldschmidt, Michel
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2006, 2 (02) : 435 - 463
  • [47] ABSTRACT l-ADIC 1-MOTIVES AND TATE'S CANONICAL CLASS FOR NUMBER FIELDS
    Greither, Cornelius
    Popescu, Cristian D.
    DOCUMENTA MATHEMATICA, 2018, 23 : 839 - 870
  • [48] TRANSCENDENCE OF ELLIPTIC INTEGRAL PERIODS
    LAURENT, M
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1980, 316 : 122 - 139
  • [49] TRANSCENDENCE PROPERTIES OF ELLIPTIC INTEGRAL PERIODS
    WUSTHOLZ, G
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1984, 354 : 164 - 174
  • [50] Fitting ideals of l-adic realizations of Picard 1-motives and class groups of global function fields
    Greither, Cornelius
    Popescu, Cristian D.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 675 : 223 - 247