Simple Physical Adversarial Examples against End-to-End Autonomous Driving Models

被引:39
|
作者
Boloor, Adith [1 ]
He, Xin [2 ]
Gill, Christopher [3 ]
Vorobeychik, Yevgeniy [3 ]
Zhang, Xuan [1 ]
机构
[1] Washington Univ, Elect & Syst Engn, St Louis, MO 63110 USA
[2] Univ Michigan, Comp Sci & Engn, Ann Arbor, MI 48109 USA
[3] Washington Univ, Comp Sci & Engn, St Louis, MO 63110 USA
关键词
machine learning; adversarial examples; autonomous driving; end-to-end learning;
D O I
10.1109/icess.2019.8782514
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent advances in machine learning, especially techniques such as deep neural networks, are promoting a range of high-stakes applications, including autonomous driving, which often relies on deep learning for perception. While deep learning for perception has been shown to be vulnerable to a host of subtle adversarial manipulations of images, end-to-end demonstrations of successful attacks, which manipulate the physical environment and result in physical consequences, are scarce. Moreover, attacks typically involve carefully constructed adversarial examples at the level of pixels. We demonstrate the first end-to-end attacks on autonomous driving in simulation, using simple physically realizable attacks: the painting of black lines on the road. These attacks target deep neural network models for end-to-end autonomous driving control. A systematic investigation shows that such attacks are surprisingly easy to engineer, and we describe scenarios (e.g., right turns) in which they are highly effective, and others that are less vulnerable (e.g., driving straight). Further, we use network deconvolution to demonstrate that the attacks succeed by inducing activation patterns similar to entirely different scenarios used in training.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Attacking vision-based perception in end-to-end autonomous driving models
    Boloor, Adith
    Garimella, Karthik
    He, Xin
    Gill, Christopher
    Vorobeychik, Yevgeniy
    Zhang, Xuan
    JOURNAL OF SYSTEMS ARCHITECTURE, 2020, 110
  • [12] End-to-End Urban Autonomous Driving With Safety Constraints
    Hou, Changmeng
    Zhang, Wei
    IEEE ACCESS, 2024, 12 : 132198 - 132209
  • [13] A Review of End-to-End Autonomous Driving in Urban Environments
    Coelho, Daniel
    Oliveira, Miguel
    IEEE ACCESS, 2022, 10 : 75296 - 75311
  • [14] SEECAD: Semantic End-to-End Communication for Autonomous Driving
    Ribouh, Soheyb
    Hadid, Abdenour
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 1808 - 1813
  • [15] End-to-end Spatiotemporal Attention Model for Autonomous Driving
    Zhao, Ruijie
    Zhang, Yanxin
    Huang, Zhiqing
    Yin, Chenkun
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 2649 - 2653
  • [16] End-to-End Federated Learning for Autonomous Driving Vehicles
    Zhang, Hongyi
    Bosch, Jan
    Olsson, Helena Holmstrom
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [17] End-to-End Learning with Memory Models for Complex Autonomous Driving Tasks in Indoor Environments
    Lai, Zhihui
    Braunl, Thomas
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2023, 107 (03)
  • [18] End-to-End Learning with Memory Models for Complex Autonomous Driving Tasks in Indoor Environments
    Zhihui Lai
    Thomas Bräunl
    Journal of Intelligent & Robotic Systems, 2023, 107
  • [19] Hidden Biases of End-to-End Driving Models
    Jaeger, Bernhard
    Chitta, Kashyap
    Geiger, Andreas
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 8206 - 8215
  • [20] Guiding Attention in End-to-End Driving Models
    Porres, Diego
    Xiao, Yi
    Villalonga, Gabriel
    Levy, Alexandre
    Lopez, Antonio M.
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 2353 - 2360