Deep Learning in AI for Information Fusion Panel Discussion

被引:3
|
作者
Blasch, Erik [1 ]
Kadar, Ivan [2 ]
Grewe, Lynne L. [3 ]
Stevenson, Garrett [3 ]
Majumder, Uttam K. [4 ]
Chong, Chee-Yee [5 ]
机构
[1] US Air Force, AFOSR, Res Lab, Arlington, VA 22203 USA
[2] Interlink Syst Sci Inc, 1979 Marcus Ave, Lake Success, NY 11042 USA
[3] Calif State Univ, East Bay 25800 Carlos Bee Blvd, Hayward, CA 94542 USA
[4] US Air Force, Res Lab, Informat Directorate, Rome, NY 13441 USA
[5] POB 4082, Los Altos, CA 94024 USA
关键词
Artificial Intelligence; Multimodal Deep Learning; Deep Neural Networks; Context-enhanced information; fusion; situation assessment; probabilistic models; target-tracking and recognition; temporal networks;
D O I
10.1117/12.2519230
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
During the 2018 SPIE DSS conference, panelists were invited to highlight the trends and use of artificial intelligence and deep learning (AI/DL) for information fusion. This paper highlights the common issues presented from the panel discussion. The key issues include: leveraging AI/DL coordinated with information fusion for: ( 1) knowledge reasoning and reasoning, (2) information fusion enhancement, (3) object recognition and tracking, (4) data with models fusion, and (5) deep multimodal fusion cognition strategies to support the user.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] InSAR Phase Unwrapping by Deep Learning Based on Gradient Information Fusion
    Li, Liutong
    Zhang, Hong
    Tang, Yixian
    Wang, Chao
    Gu, Feng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [22] GlobalFusion: A Global Attentional Deep Learning Framework for Multisensor Information Fusion
    Liu, Shengzhong
    Yao, Shuochao
    Li, Jinyang
    Liu, Dongxin
    Wang, Tianshi
    Shao, Huajie
    Abdelzaher, Tarek
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2020, 4 (01):
  • [23] Fusion of tactile and visual information in deep learning models for object recognition
    Babadian, Reza Pebdani
    Faez, Karim
    Amiri, Mahmood
    Falotico, Egidio
    INFORMATION FUSION, 2023, 92 : 313 - 325
  • [24] Panel: Using Generative AI in Teaching and Learning
    Sumner, Mary
    Van Slyke, Craig
    Galletta, Dennis F.
    Niederman, Fred
    PROCEEDINGS OF THE 2024 COMPUTERS AND PEOPLE RESEARCH CONFERENCE, SIGMIS-CPR 2024, 2024,
  • [25] WHAT ARE THE PESTICIDE INFORMATION PROBLEMS - A PANEL DISCUSSION
    MAGEE, RJ
    JOURNAL OF CHEMICAL DOCUMENTATION, 1964, 4 (03): : 164 - 164
  • [26] The discussion of information fusion technique of fuze
    Wang, X
    Zhang, H
    ISTM/2003: 5TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-6, CONFERENCE PROCEEDINGS, 2003, : 1115 - 1118
  • [27] Deep Learning and Lung Cancer: AI to Extract Information Hidden in Routine CT Scans
    Shaffer, Kitt
    RADIOLOGY, 2020, 296 (01) : 225 - 226
  • [28] Hybrid Deep RePReL: Integrating Relational Planning and Reinforcement Learning for Information Fusion
    Kokel, Harsha
    Prabhakar, Nikhilesh
    Ravindran, Balaraman
    Blasch, Erik
    Tadepalli, Prasad
    Natarajan, Sriraam
    2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,
  • [29] Multichannel Information Fusion and Deep Transfer Learning for Rotating Machinery Fault Diagnosis
    Zhang L.
    Hu Y.
    Zhao L.
    Zhang H.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2023, 34 (08): : 966 - 975
  • [30] Artificial Intelligence Algorithms for Multisensor Information Fusion Based on Deep Learning Algorithms
    Jiang, Lan
    MOBILE INFORMATION SYSTEMS, 2022, 2022