Numerical methods for multi-term fractional (arbitrary) orders differential equations

被引:83
|
作者
El-Mesiry, AEM
El-Sayed, AMA
El-Saka, HAA [1 ]
机构
[1] Univ Mansoura, Damietta Fac Sci, Dept Math, New Damietta, Egypt
[2] Univ Alexandria, Fac Sci, Alexandria, Egypt
关键词
multi-term fractional differential equation; Caputo derivative; Euler's method; product trapezoidal quadrature formula; product rectangle rule;
D O I
10.1016/j.amc.2003.11.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our main concern here is to give a numerical scheme to solve a nonlinear multi-term fractional (arbitrary) orders differential equation. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:683 / 699
页数:17
相关论文
共 50 条
  • [41] Efficient Solution of Multi-Term Fractional Differential Equations Using P(EC)mE Methods
    K. Diethelm
    Computing, 2003, 71 : 305 - 319
  • [42] Efficient and Stable Numerical Methods for Multi-Term Time Fractional Sub-Diffusion Equations
    Ren, Jincheng
    Sun, Zhi-zhong
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2014, 4 (03) : 242 - 266
  • [43] Analytical and numerical solutions of different parabolic heat equations presented in the form of multi-term fractional differential equations
    Kazemi, M.
    Erjaee, G. H.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2011, 35 (A3): : 185 - 192
  • [44] Fractional collocation methods for multi-term linear and nonlinear fractional differential equations with variable coefficients on the half line
    Yang, Yubo
    Ma, Heping
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (02) : 399 - 416
  • [45] Multi-Term Fractional Differential Equations with Generalized Integral Boundary Conditions
    Ahmad, Bashir
    Alghanmi, Madeaha
    Alsaedi, Ahmed
    Ntouyas, Sotiris K.
    FRACTAL AND FRACTIONAL, 2019, 3 (03) : 1 - 15
  • [46] DEGENERATE MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS IN LOCALLY CONVEX SPACES
    Kostic, Marko
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2016, 100 (114): : 49 - 75
  • [47] Bernoulli polynomials collocation method for multi-term fractional differential equations
    Chen, Xumei
    Lei, Siyi
    Wang, Linjun
    Wang, Linjun (wanglinjun@ujs.edu.cn), 2020, International Association of Engineers (50) : 699 - 706
  • [48] Chaotic attractors and fixed point methods in piecewise fractional derivatives and multi-term fractional delay differential equations
    Panda, Sumati Kumari
    Abdeljawad, Thabet
    Jarad, Fahd
    RESULTS IN PHYSICS, 2023, 46
  • [49] On multi-term fractional differential equations with multi-point boundary conditions
    Ahmad, Bashir
    Alghamdi, Najla
    Alsaedi, Ahmed
    Ntouyas, Sotiris K.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (16-18): : 3369 - 3390
  • [50] Attractivity for multi-term Riemann-Liouville fractional differential equations
    Sun, Yu
    Gu, Haibo
    Zhang, Yanhui
    Yan, Xiuxiu
    Shi, Yunji
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 1625 - 1630