Dirichlet problem at infinity on Gromov hyperbolic metric measure spaces

被引:12
|
作者
Holopainen, Ilkka
Lang, Urs
Vahakangas, Aleksi
机构
[1] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[2] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词
D O I
10.1007/s00208-007-0108-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic Dirichlet problem for p-harmonic functions in a very general setting of Gromov hyperbolic metric measure spaces.
引用
收藏
页码:101 / 134
页数:34
相关论文
共 50 条
  • [31] Boundary rigidity of Gromov hyperbolic spaces
    Liang, Hao
    Zhou, Qingshan
    GEOMETRIAE DEDICATA, 2024, 218 (05)
  • [32] Domains in Metric Measure Spaces with Boundary of Positive Mean Curvature, and the Dirichlet Problem for Functions of Least Gradient
    Lahti, Panu
    Maly, Lukas
    Shanmugalingam, Nageswari
    Speight, Gareth
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (04) : 3176 - 3220
  • [33] Sphericalizations and applications in Gromov hyperbolic spaces
    Zhou, Qingshan
    Li, Yaxiang
    Li, Xining
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 509 (01)
  • [34] Potential Theory on Gromov Hyperbolic Spaces
    Kemper, Matthias
    Lohkamp, Joachim
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2022, 10 (01): : 394 - 431
  • [35] A Gromov Hyperbolic Metric vs the Hyperbolic and Other Related Metrics
    Mohapatra, Manas Ranjan
    Sahoo, Swadesh Kumar
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2018, 18 (03) : 473 - 493
  • [36] Domains in Metric Measure Spaces with Boundary of Positive Mean Curvature, and the Dirichlet Problem for Functions of Least Gradient
    Panu Lahti
    Lukáš Malý
    Nageswari Shanmugalingam
    Gareth Speight
    The Journal of Geometric Analysis, 2019, 29 : 3176 - 3220
  • [37] STRONG A-INFINITY WEIGHTS AND SOBOLEV CAPACITIES IN METRIC MEASURE SPACES
    Costea, Serban
    HOUSTON JOURNAL OF MATHEMATICS, 2009, 35 (04): : 1233 - 1249
  • [38] The distance of L-infinity from BMO on metric measure spaces
    Kinnunen, Juha
    Shukla, Parantap
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2014, 5 (02) : 117 - 129
  • [39] Compact metric measure spaces and Λ-coalescents coming down from infinity
    Biehler, Holger F.
    Pfaffelhuber, Peter
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2012, 9 (02): : 269 - 278
  • [40] Steiner Problem in the Gromov-Hausdorff Space: The Case of Finite Metric Spaces
    A. O. Ivanov
    N. K. Nikolaeva
    A. A. Tuzhilin
    Proceedings of the Steklov Institute of Mathematics, 2019, 304 : S88 - S96