Existence and Uniqueness for a Coupled Parabolic-Elliptic Model with Applications to Magnetic Relaxation

被引:13
|
作者
McCormick, David S. [1 ]
Robinson, James C. [1 ]
Rodrigo, Jose L. [1 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
CLASSICAL-SOLUTIONS; MHD SYSTEM; REGULARITY; EQUATIONS; INEQUALITIES; SPACES; WEAK;
D O I
10.1007/s00205-014-0760-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence, uniqueness and regularity of weak solutions of a coupled parabolic-elliptic model in 2D, and the existence of weak solutions in 3D; we consider the standard equations of magnetohydrodynamics with the advective terms removed from the velocity equation. Despite the apparent simplicity of the model, the proof in 2D requires results that are at the limit of what is available, including elliptic regularity in L (1) and a strengthened form of the Ladyzhenskaya inequality parallel to f parallel to(L4)<= c parallel to f parallel to(1/2)(L2,infinity)parallel to del f parallel to(1/2)(L2), which we derive using the theory of interpolation. The model potentially has applications to the method of magnetic relaxation introduced by Moffatt (J Fluid Mech 159:359-378, 1985) to construct stationary Euler flows with non-trivial topology.
引用
收藏
页码:503 / 523
页数:21
相关论文
共 50 条
  • [1] Existence and Uniqueness for a Coupled Parabolic-Elliptic Model with Applications to Magnetic Relaxation
    David S. McCormick
    James C. Robinson
    Jose L. Rodrigo
    Archive for Rational Mechanics and Analysis, 2014, 214 : 503 - 523
  • [2] Existence and uniqueness of weak periodic solutions for a coupled parabolic-elliptic system
    Elmassoudi, Mhamed
    Ahakkoud, Yassine
    Bennouna, Jaouad
    CARPATHIAN JOURNAL OF MATHEMATICS, 2023, 39 (03) : 641 - 657
  • [3] Existence of a capacity solution to a coupled nonlinear parabolic-elliptic system
    Gonzalez Montesinos, Maria Teresa
    Ortegon Gallego, Francisco
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2007, 6 (01) : 23 - 42
  • [4] On a parabolic-elliptic chemotactic model with coupled boundary conditions
    Delgado, Manuel
    Morales-Rodrigo, Cristian
    Suarez, Antonio
    Ignacio Tello, J.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 3884 - 3902
  • [5] Existence and uniqueness theorem on weak solutions to the parabolic-elliptic Keller-Segel system
    Kozono, Hideo
    Sugiyama, Yoshie
    Yahagi, Yumi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (07) : 2295 - 2313
  • [6] Existence of solutions to a strongly nonlinear parabolic-elliptic coupled system of infinite order
    Chahboune, Manar
    Rhoudaf, Mohamed
    Talbi, Hajar
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (10)
  • [7] Existence and supercontractive estimates for parabolic-elliptic systems
    Boccardo, Lucio
    Orsina, Luigi
    Porzio, Maria Michaela
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 227
  • [8] Existence for Parabolic-Elliptic Degenerate Diffusion Problems
    Favini, Angelo
    Marinoschi, Gabriela
    DEGENERATE NONLINEAR DIFFUSION EQUATIONS, 2012, 2049 : 1 - 56
  • [9] Null controllability for a parabolic-elliptic coupled system
    E. Fernández-Cara
    J. Limaco
    Silvano B. de Menezes
    Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 285 - 308
  • [10] Null controllability for a parabolic-elliptic coupled system
    Fernandez-Cara, E.
    Limaco, J.
    de Menezes, Silvano B.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (02): : 285 - 308