A posteriori error analysis of the time-dependent Stokes equations with mixed boundary conditions

被引:16
|
作者
Bernardi, Christine [1 ,2 ]
Sayah, Toni
机构
[1] CNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
[2] Univ Paris 06, F-75252 Paris 05, France
关键词
Stokes equations; mixed boundary conditions; finite element method; a posteriori analysis; VORTICITY-VELOCITY-PRESSURE; DOMAINS;
D O I
10.1093/imanum/drt067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the time-dependent Stokes problem with mixed boundary conditions. The problem is discretized by the backward Euler's scheme in time and finite elements in space. We establish an optimal a posteriori error with two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization.
引用
收藏
页码:179 / 198
页数:20
相关论文
共 50 条
  • [21] A note on a posteriori error analysis for dual mixed methods with mixed boundary conditions
    Barrios, Tomas P.
    Bustinza, Rommel
    Campos, Camila
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (05) : 3897 - 3918
  • [22] Posteriori error estimation for stabilized mixed approximations of the Stokes equations
    Oxford Univ. Computing Laboratory, Wolfson Building, Oxford OX1 3QD, United Kingdom
    不详
    Siam J. Sci. Comput., 4 (1321-1336):
  • [23] A POSTERIORI ERROR ESTIMATION FOR STABILIZED MIXED APPROXIMATIONS OF THE STOKES EQUATIONS
    Kay, David
    Silvester, David
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (04): : 1321 - 1336
  • [24] A priori error analysis of the fully discretized time-dependent coupled Darcy and Stokes equations
    Bernardi C.
    Orfi A.Y.
    SeMA Journal, 2016, 73 (2) : 97 - 119
  • [25] LOCAL A POSTERIORI ERROR ESTIMATES FOR TIME-DEPENDENT HAMILTON-JACOBI EQUATIONS
    Cockburn, Bernardo
    Merev, Ivan
    Qian, Jianliang
    MATHEMATICS OF COMPUTATION, 2013, 82 (281) : 187 - 212
  • [26] A posteriori error estimates of finite element method for the time-dependent Oseen equations
    Zhang, Tong
    Zhao, Jing
    APPLICABLE ANALYSIS, 2016, 95 (05) : 1144 - 1163
  • [27] An a posteriori finite element error analysis for the Stokes equations
    Jou, J
    Liu, JL
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 114 (02) : 333 - 343
  • [28] Time-dependent bending of a plate with mixed boundary conditions
    Chudinovich, I
    Constanda, C
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING: ANALYTIC AND NUMERICAL TECHNIQUES, 2004, : 41 - 46
  • [29] Superconvergence and a posteriori error estimates for boundary control governed by Stokes equations
    Liu, Hui-po
    Yan, Ning-ning
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (03) : 343 - 356
  • [30] A Mixed Finite Element Approximation for Time-Dependent Navier-Stokes Equations with a General Boundary Condition
    El Moutea, Omar
    Nakbi, Nadia
    El Akkad, Abdeslam
    Elkhalfi, Ahmed
    El Ouadefli, Lahcen
    Vlase, Sorin
    Scutaru, Maria Luminita
    SYMMETRY-BASEL, 2023, 15 (11):