Functional Motifs in Biochemical Reaction Networks

被引:211
|
作者
Tyson, John J. [1 ,2 ]
Novak, Bela [3 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Biol Sci, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA
[3] Univ Oxford, Dept Biochem, Oxford Ctr Integrat Syst Biol, Oxford OX1 3QU, England
基金
英国生物技术与生命科学研究理事会;
关键词
signal transduction; feedback; feed-forward; switches; clocks; MATURATION-PROMOTING FACTOR; CELL-CYCLE OSCILLATOR; ESCHERICHIA-COLI; DICTYOSTELIUM CELLS; REGULATORY NETWORKS; SIGNAL-TRANSDUCTION; POSITIVE FEEDBACK; FISSION YEAST; DYNAMICS; XENOPUS;
D O I
10.1146/annurev.physchem.012809.103457
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The signal-response characteristics of a living cell are determined by complex networks of interacting genes, proteins, and metabolites. Understanding how cells respond to specific challenges, how these responses are contravened in diseased cells, and how to intervene pharmacologically in the decision-making processes of cells requires an accurate theory of the information-processing capabilities of macromolecular regulatory networks. Adopting an engineer's approach to control systems, we ask whether realistic cellular control networks can be decomposed into simple regulatory motifs that carry out specific functions in a cell. We show that such functional motifs exist and review the experimental evidence that they control cellular responses as expected.
引用
收藏
页码:219 / 240
页数:22
相关论文
共 50 条
  • [41] Characterizing Multistationarity Regimes in Biochemical Reaction Networks
    Otero-Muras, Irene
    Banga, Julio R.
    Alonso, Antonio A.
    [J]. PLOS ONE, 2012, 7 (07):
  • [42] Parameter sensitivity analysis for biochemical reaction networks
    Minas, Giorgos
    Rand, David A.
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (05) : 3965 - 3987
  • [43] In silico evolution of functional modules in biochemical networks
    Paladugu, S. R.
    Chickarmane, V.
    Deckard, A.
    Frumkin, J. P.
    McCormack, M.
    Sauro, H. M.
    [J]. IEE PROCEEDINGS SYSTEMS BIOLOGY, 2006, 153 (04): : 223 - 235
  • [44] Functional motifs
    Koonin, EV
    Altschul, SF
    Bork, P
    [J]. NATURE GENETICS, 1996, 13 (03) : 266 - 268
  • [45] Discovering novel cis-regulatory motifs using functional networks
    Ettwiller, LM
    Rung, J
    Birney, E
    [J]. GENOME RESEARCH, 2003, 13 (05) : 883 - 895
  • [46] Biochemical characterization of a Neisseria meningitidis polysialyltransferase reveals novel functional motifs in bacterial sialyltransferases
    Freiberger, Friedrich
    Claus, Heike
    Gunzel, Almut
    Oltmann-Norden, Imke
    Vionnet, Justine
    Muhlenhoff, Martina
    Vogel, Ulrich
    Vann, Willie F.
    Gerardy-Schahn, Rita
    Stummeyer, Katharina
    [J]. MOLECULAR MICROBIOLOGY, 2007, 65 (05) : 1258 - 1275
  • [47] iVUN: interactive Visualization of Uncertain biochemical reaction Networks
    Vehlow, Corinna
    Hasenauer, Jan
    Kramer, Andrei
    Raue, Andreas
    Hug, Sabine
    Timmer, Jens
    Radde, Nicole
    Theis, Fabian J.
    Weiskopf, Daniel
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [48] Identifying frequent patterns in biochemical reaction networks: a workflow
    Lambusch, Fabienne
    Waltemath, Dagmar
    Wolkenhauer, Olaf
    Sandkuhl, Kurt
    Rosenke, Christian
    Henkel, Ron
    [J]. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2018,
  • [49] SMGen: A Generator of Synthetic Models of Biochemical Reaction Networks
    Riva, Simone G.
    Cazzaniga, Paolo
    Nobile, Marco S.
    Spolaor, Simone
    Rundo, Leonardo
    Besozzi, Daniela
    Tangherloni, Andrea
    [J]. SYMMETRY-BASEL, 2022, 14 (01):
  • [50] Path mutual information for a class of biochemical reaction networks
    Duso, Lorenzo
    Zechner, Christoph
    [J]. 2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6610 - 6615