Calculation of tunnel couplings in open gate-defined disordered quantum dot systems

被引:6
|
作者
Klos, Jan [1 ]
Hassler, Fabian
Cerfontaine, Pascal
Bluhm, Hendrik
Schreiber, Lars R.
机构
[1] Forschungszentrum Julich, JARA FIT Inst Quantum Informat, D-52074 Aachen, Germany
基金
欧盟地平线“2020”;
关键词
SPIN QUBIT; SILICON; FIDELITY;
D O I
10.1103/PhysRevB.98.155320
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum computation based on semiconductor electron-spin qubits requires high control of tunnel couplings between the quantum dots and the electron reservoirs. Potential disorder and the increasing complexity of the two-dimensional gate-defined quantum computing devices set high demands on the gate design and the voltage tuning of the tunnel barriers. We present a Green's formalism approach for the calculation of tunnel couplings between a quantum dot and a reservoir. Our method takes into account in full detail the two-dimensional electrostatic potential of the quantum dot, the tunnel barrier, and the reservoir. A wideb and limit is employed only far away from the tunnel barrier region where the density of states is sufficiently large. We calculate the tunnel coupling including potential disorder effects, which become increasingly important for large-scale silicon-based spin-qubit devices. Studying the tunnel couplings of a single-electron transistor in Si/SiGe as a showcase, we find that charged defects are the dominant source of disorder leading to variations in the tunnel coupling of four orders of magnitude.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] All-Microwave Control and Dispersive Readout of Gate-Defined Quantum Dot Qubits in Circuit Quantum Electrodynamics
    Scarlino, P.
    van Woerkom, D. J.
    Stockklauser, A.
    Koski, J., V
    Collodo, M. C.
    Gasparinetti, S.
    Reichl, C.
    Wegscheider, W.
    Ihn, T.
    Ensslin, K.
    Wallraff, A.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (20)
  • [22] Gate-defined coupled quantum dots in topological insulators
    Ertler, Christian
    Raith, Martin
    Fabian, Jaroslav
    [J]. PHYSICAL REVIEW B, 2014, 89 (07):
  • [23] Gate-defined quantum confinement in suspended bilayer graphene
    Allen, M. T.
    Martin, J.
    Yacoby, A.
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [24] Gate-defined quantum confinement in suspended bilayer graphene
    M. T. Allen
    J. Martin
    A. Yacoby
    [J]. Nature Communications, 3
  • [25] Electronic g factor and tunable spin-orbit coupling in a gate-defined InSbAs quantum dot
    Metti, S.
    Thomas, C.
    Manfra, M. J.
    [J]. PHYSICAL REVIEW B, 2023, 108 (23)
  • [26] Gate-Defined Graphene Quantum Point Contact in the Quantum Hall Regime
    Nakaharai, S.
    Williams, J. R.
    Marcus, C. M.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (03)
  • [27] Quantum Simulation of Antiferromagnetic Heisenberg Chain with Gate-Defined Quantum Dots
    van Diepen, C. J.
    Hsiao, T. -K.
    Mukhopadhyay, U.
    Reichl, C.
    Wegscheider, W.
    Vandersypen, L. M. K.
    [J]. PHYSICAL REVIEW X, 2021, 11 (04)
  • [28] Preparation and Readout of Multielectron High-Spin States in a Gate-Defined GaAs/AlGaAs Quantum Dot
    Kiyama, H.
    Yoshimi, K.
    Kato, T.
    Nakajima, T.
    Oiwa, A.
    Tarucha, S.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (08)
  • [29] Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon
    Mi, X.
    Cady, J. V.
    Zajac, D. M.
    Stehlik, J.
    Edge, L. F.
    Petta, J. R.
    [J]. APPLIED PHYSICS LETTERS, 2017, 110 (04)
  • [30] Edgeless and purely gate-defined nanostructures in InAs quantum wells
    Mittag, Christopher
    Karalic, Matija
    Lei, Zijin
    Tschirky, Thomas
    Wegscheider, Werner
    Ihn, Thomas
    Ensslin, Klaus
    [J]. APPLIED PHYSICS LETTERS, 2018, 113 (26)