Fault detection in nonlinear systems based on type-2 fuzzy sets and bat optimization algorithm

被引:6
|
作者
Safarinejadian, Behrouz [1 ]
Bagheri, Bahareh [1 ]
Ghane, Parisa [1 ]
机构
[1] Shiraz Univ Technol, Elect & Elect Engn Dept, Shiraz 71555313, Iran
关键词
Fuzzy system; interval type-2 fuzzy; bat algorithm; fault detection; GENERATION; DIAGNOSIS; MODEL;
D O I
10.3233/IFS-141288
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new method of fault detection is proposed based on interval type-2 fuzzy systems. The main idea is to provide a confident span using interval type-2 fuzzy sets. Bat algorithm, as a metaheuristic method, is used to optimize the parameters of the system. In other words, upper and lower bounds of the interval type-2 fuzzy system are estimated by means of two optimal fuzzy functions. The proposed fault detection method has been tested in a non-linear system, a two-tank with a fluid flow. Simulation results show that the proposed method is very strong and effective.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 50 条
  • [41] Emerging Issues and Applications of Type-2 Fuzzy Sets and Systems
    Castillo, Oscar
    Muhuri, Pranab K.
    Melin, Patricia
    Pulkkinen, Pietari
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 90
  • [42] Interval Type-2 Fuzzy Sets and Systems: Overview and Outlook
    Wu D.-R.
    Zeng Z.-G.
    Mo H.
    Wang F.-Y.
    [J]. Wu, Dong-Rui (drwu@hust.edu.cn), 1600, Science Press (46): : 1539 - 1556
  • [43] Hardware Implementation of Karnik-Mendel Algorithm for Interval Type-2 Fuzzy Sets and Systems
    Hernandez Yanez, Omar
    Molina Lozano, Heron
    Batyrshin, Ildar
    [J]. ADVANCES IN SOFT COMPUTING, MICAI 2019, 2019, 11835 : 537 - 545
  • [44] An improved type-reduction algorithm for general type-2 fuzzy sets
    Wu, Li
    Qian, Fucai
    Wang, Lingzhi
    Ma, Xuehui
    [J]. INFORMATION SCIENCES, 2022, 593 : 99 - 120
  • [45] Fuzzy Feature Selection Based On Interval Type-2 Fuzzy Sets
    Cherif, Sahar
    Baklouti, Nesrine
    Alimi, Adel
    Snasel, Vaclav
    [J]. NINTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2016), 2017, 10341
  • [46] Fuzzy interpolative reasoning for sparse fuzzy rule-based systems based on interval type-2 fuzzy sets
    Chen, Shyi-Ming
    Lee, Li-Wei
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (08) : 9947 - 9957
  • [47] Rules extraction algorithm of type-2 fuzzy systems
    Zhang, Wei-Bin
    Hu, Huai-Zhong
    Liu, Wen-Jiang
    [J]. Kongzhi yu Juece/Control and Decision, 2009, 24 (03): : 435 - 439
  • [48] Interval Type-2 Fuzzy Set Application in Fault Detection for Chemical Reactor with TLBO Algorithm
    Enjavimadar, Mohammad Hossein
    Safarinejadian, Behrouz
    Mozaffari, Mohiyeddin
    [J]. 2017 5TH INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, AND AUTOMATION (ICCIA), 2017, : 60 - 65
  • [49] Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm
    Jonathan Perez
    Fevrier Valdez
    Oscar Castillo
    Patricia Melin
    Claudia Gonzalez
    Gabriela Martinez
    [J]. Soft Computing, 2017, 21 : 667 - 685
  • [50] Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm
    Perez, Jonathan
    Valdez, Fevrier
    Castillo, Oscar
    Melin, Patricia
    Gonzalez, Claudia
    Martinez, Gabriela
    [J]. SOFT COMPUTING, 2017, 21 (03) : 667 - 685