Background and aims Legumes respond to PAH-contamination in a systemic manner and influence the overall rhizosphere microbial community structure, but the effect on the functional microbial community is unknown. In this study, plant-mediated PAH effects on specific bacterial taxa and the PAH-degraders in the rhizosphere were examined. Methods White clover was cultivated using a split-root system, with one side exposed to phenanthrene or pyrene, and the other side uncontaminated. Rhizosphere microbial diversity and activity were assessed with DGGE and qPCR, and changes in the root exudation were analyzed with GC-MS and HPLC. Results PAH contamination of one side of the rhizosphere significantly influenced the community structure of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Verrucomicrobia in the uncontaminated side of the rhizosphere. This indirect PAH-effect also influenced the diversity of bacterial PAH dioxygenase genes present, though the expression levels of these genes was not affected. No significant difference in the root exudation of general metabolites (amino acids, organic acids, sugars and sugar alcohols) and a flavonoid was observed. Conclusions In response to PAH-stress, white clover specifically influenced the diversity of the PAH-degrading community in its rhizosphere, but the abundance and activity of these PAH-degraders was not enhanced by the indirect PAH-effect. The plant-mediated response therefore does not appear to be directed towards enhanced removal of PAH for plant protection.