Perturbative analysis of stochastic Hamiltonian problems under time discretizations

被引:10
|
作者
D'Ambrosio, R. [1 ]
Giordano, G. [2 ]
Paternoster, B. [2 ]
Ventola, A. [2 ]
机构
[1] Univ LAquila, Dept Informat Engn & Comp Sci & Math, Laquila, Italy
[2] Univ Salerno, Dept Math, Salerno, Italy
关键词
Stochastic Hamiltonian problems; Stochastic Runge-Kutta methods; Perturbative theory; RUNGE-KUTTA METHODS; DIFFERENTIAL-EQUATIONS; PRESERVATION;
D O I
10.1016/j.aml.2021.107223
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we focus on the study of stochastic Hamiltonian problem driven by additive Wiener noise. In particular, we aim to analyse the behaviour of discretizations to these problems, motivated by some results on stochastic Runge-Kutta methods (SRK) developed by Burrage and Burrage (2012). In fact, SRK methods present a remarkable error that increases with the parameter of the diffusive part of the problem. Through a perturbative analysis, we investigate the reason of this behaviour, leading to a negative answer: retaining the main features of stochastic Hamiltonian problems does not happen straightforwardly for any time discretization. This analysis is also numerically confirmed. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] TIME CONSISTENCY FOR MULTISTAGE STOCHASTIC OPTIMIZATION PROBLEMS UNDER CONSTRAINTS IN EXPECTATION
    Carpentier, Pierre
    Chancelier, Jean-Philippe
    De Lara, Michel
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (02) : 1909 - 1936
  • [22] A class of space-time discretizations for the stochastic p-Stokes system
    Le, Kim-Ngan
    Wichmann, Jorn
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 177
  • [23] STABILITY OF EXPLICIT TIME DISCRETIZATIONS FOR SOLVING INITIAL VALUE-PROBLEMS
    JELTSCH, R
    NEVANLINNA, O
    NUMERISCHE MATHEMATIK, 1981, 37 (01) : 61 - 91
  • [24] Hamiltonian Analysis of Subcritical Stochastic Epidemic Dynamics
    Worden, Lee
    Schwartz, Ira B.
    Bianco, Simone
    Ackley, Sarah F.
    Lietman, Thomas M.
    Porco, Travis C.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2017, 2017
  • [25] Stability analysis of model problems for elastodynamic boundary element discretizations
    Peirce, A.
    Siebrits, E.
    Numerical Methods for Partial Differential Equations, 1996, 12 (05):
  • [26] WAVENUMBER EXPLICIT ANALYSIS FOR GALERKIN DISCRETIZATIONS OF LOSSY HELMHOLTZ PROBLEMS
    Melenk, Jens M.
    Sauter, Stefan A.
    Torres, Celine
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (04) : 2119 - 2143
  • [27] Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
    Akyildiz, O. Deniz
    Sabanis, Sotirios
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [28] EFFICIENT ITERATIVE SOLVERS FOR STOCHASTIC GALERKIN DISCRETIZATIONS OF LOG-TRANSFORMED RANDOM DIFFUSION PROBLEMS
    Ullmann, Elisabeth
    Elman, Howard C.
    Ernst, Oliver G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02): : A659 - A682
  • [29] Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space
    Bause, Markus
    Radu, Florin A.
    Koecher, Uwe
    NUMERISCHE MATHEMATIK, 2017, 137 (04) : 773 - 818
  • [30] Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space
    Markus Bause
    Florin A. Radu
    Uwe Köcher
    Numerische Mathematik, 2017, 137 : 773 - 818