On nilpotent evolution algebras

被引:21
|
作者
Elduque, Alberto [1 ,2 ]
Labra, Alicia [3 ]
机构
[1] Univ Zaragoza, Dept Matemat, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Inst Univ Matemat & Aplicac, E-50009 Zaragoza, Spain
[3] Univ Chile, Fac Ciencias, Dept Matemat, Casilla 653, Santiago, Chile
关键词
Evolution algebra; Nilpotent; Type; Annihilator; Classification;
D O I
10.1016/j.laa.2016.04.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The type and several invariant subspaces related to the upper annihilating series of finite-dimensional nilpotent evolution algebras are introduced. These invariants can be easily computed from any natural basis. Some families of nilpotent evolution algebras, defined in terms of a nondegenerate, symmetric, bilinear form and some commuting, symmetric, diagonalizable endomorphisms relative to the form, are explicitly constructed. Both the invariants and these families are used to review and complete the classification of nilpotent evolution algebras up to dimension five over algebraically closed fields. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:11 / 31
页数:21
相关论文
共 50 条
  • [31] Quantum cluster algebras and quantum nilpotent algebras
    Goodearl, Kenneth R.
    Yakimov, Milen T.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (27) : 9696 - 9703
  • [32] Derivation algebras of certain nilpotent Lie algebras
    Cabezas, JM
    Gómez, JR
    JOURNAL OF LIE THEORY, 2001, 11 (02) : 483 - 489
  • [33] On nilpotent extensions of Lie algebras
    Yankosky, B
    HOUSTON JOURNAL OF MATHEMATICS, 2001, 27 (04): : 719 - 724
  • [34] A Characterization of Nilpotent Leibniz Algebras
    Alice Fialowski
    A. Kh. Khudoyberdiyev
    B. A. Omirov
    Algebras and Representation Theory, 2013, 16 : 1489 - 1505
  • [35] Representations of nilpotent Lie algebras
    Farnsteiner, R
    ARCHIV DER MATHEMATIK, 1999, 72 (01) : 28 - 39
  • [36] NILPOTENT BLOCKS AND THEIR SOURCE ALGEBRAS
    PUIG, L
    INVENTIONES MATHEMATICAE, 1988, 93 (01) : 77 - 116
  • [37] FINITELY GENERATED NILPOTENT ALGEBRAS
    SCHUCHKIN, NA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1992, (03): : 3 - 7
  • [38] NILPOTENT LIE-ALGEBRAS
    CHAO, CY
    STITZINGER, EL
    ARCHIV DER MATHEMATIK, 1976, 27 (03) : 249 - 252
  • [39] The classification of nilpotent Bol algebras
    Abdelwahab, Hani
    Calderon, Antonio J.
    Ouaridi, Amir Fernandez
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (04) : 1330 - 1343
  • [40] NILPOTENT SEMIGROUPS AND SEMIGROUP ALGEBRAS
    JESPERS, E
    OKNINSKI, J
    JOURNAL OF ALGEBRA, 1994, 169 (03) : 984 - 1011