Efficient numerical algorithm with the second-order time accuracy for a two-dimensional nonlinear fourth-order fractional wave equation

被引:4
|
作者
Wang, Jiarui [1 ]
Liu, Yang [1 ]
Wen, Cao [1 ]
Li, Hong [1 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
来源
RESULTS IN APPLIED MATHEMATICS | 2022年 / 14卷
基金
中国国家自然科学基金;
关键词
Two-dimensional nonlinear fourth-order; fractional wave equation; Finite element method; Crank-Nicolson scheme; WSGI formula; Numerical simulations; DIFFUSION-WAVE; ELEMENT ALGORITHM; SCHEME;
D O I
10.1016/j.rinam.2022.100264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we construct an efficient numerical algorithm with the second-order time accuracy for a two-dimensional nonlinear fourth-order fractional wave equation. We introduce an auxiliary variable to transform the fractional fourth-order wave problem into a low order coupled system, and then integrate the resulting equations by using Riemann-Liouville fractional integral. For the obtained fractional integral system, we use the Crank-Nicolson scheme in time with the weighted and shifted Grunwald integral (WSGI) approximation and the finite element method in space to arrive at the fully discrete coupled system. We show the detailed numerical algorithms and carry out numerical tests by taking two two-dimensional examples on rectangular and circular space domains to verify the effectiveness and convergence efficiency for our algorithm.(C) 2022 The Author(s). Published by Elsevier B.V.& nbsp;
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation
    Zhang, Pu
    Pu, Hai
    NUMERICAL ALGORITHMS, 2017, 76 (02) : 573 - 598
  • [22] A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation
    Pu Zhang
    Hai Pu
    Numerical Algorithms, 2017, 76 : 573 - 598
  • [23] Two linearized schemes for time fractional nonlinear wave equations with fourth-order derivative
    Huang, Jianfei
    Qiao, Zhi
    Zhang, Jingna
    Arshad, Sadia
    Tang, Yifa
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 66 (1-2) : 561 - 579
  • [24] Two linearized schemes for time fractional nonlinear wave equations with fourth-order derivative
    Jianfei Huang
    Zhi Qiao
    Jingna Zhang
    Sadia Arshad
    Yifa Tang
    Journal of Applied Mathematics and Computing, 2021, 66 : 561 - 579
  • [25] Two second-order and linear numerical schemes for the multi-dimensional nonlinear time-fractional Schrodinger equation
    Wang, Ying
    Wang, Gang
    Bu, Linlin
    Mei, Liquan
    NUMERICAL ALGORITHMS, 2021, 88 (01) : 419 - 451
  • [26] Fourth-order in space and second-order in time TLM model
    Simons, N.R.S.
    Sebak, A.
    IEEE Transactions on Microwave Theory and Techniques, 1995, 43 (02):
  • [27] TGMFE algorithm combined with some time second-order schemes for nonlinear fourth-order reaction diffusion system
    Yin, Baoli
    Liu, Yang
    Li, Hong
    He, Siriguleng
    Wang, Jinfeng
    RESULTS IN APPLIED MATHEMATICS, 2019, 4
  • [28] Fourth-order numerical method for the space time tempered fractional diffusion-wave equation
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    Deng, Weihua
    APPLIED MATHEMATICS LETTERS, 2017, 73 : 120 - 127
  • [29] A second-order accurate numerical method for a fractional wave equation
    McLean, William
    Mustapha, Kassem
    NUMERISCHE MATHEMATIK, 2007, 105 (03) : 481 - 510
  • [30] A second-order accurate numerical method for a fractional wave equation
    William McLean
    Kassem Mustapha
    Numerische Mathematik, 2007, 105 : 481 - 510