Deep learning-based container throughput forecasting: a triple bottom line approach

被引:15
|
作者
Shankar, Sonali [1 ]
Punia, Sushil [2 ]
Ilavarasan, P. Vigneswara [1 ]
机构
[1] Indian Inst Technol Delhi, New Delhi, India
[2] FORE Sch Management, New Delhi, India
关键词
Principal component analysis; Triple bottom line; Container throughput; Forecasting; Machine learning; LSTM; SHORT-TERM-MEMORY; NEURAL-NETWORK; MODEL SELECTION; LE HAVRE; PORT; ARIMA; PERFORMANCE; RANGE;
D O I
10.1108/IMDS-12-2020-0704
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Purpose Container throughput forecasting plays a pivotal role in strategic, tactical and operational level decision-making. The determination and analysis of the influencing factors of container throughput are observed to enhance the predicting accuracy. Therefore, for effective port planning and management, this study employs a deep learning-based method to forecast the container throughput while considering the influence of economic, environmental and social factors on throughput forecasting. Design/methodology/approach A novel multivariate container throughput forecasting method is proposed using long short-term memory network (LSTM). The external factors influencing container throughput, delineated using triple bottom line, are considered as an input to the forecasting method. The principal component analysis (PCA) is employed to reduce the redundancy of the input variables. The container throughput data of the Port of Los Angeles (PLA) is considered for empirical analysis. The forecasting accuracy of the proposed method is measured via an error matrix. The accuracy of the results is further substantiated by the Diebold-Mariano statistical test. Findings The result of the proposed method is benchmarked with vector autoregression (VAR), autoregressive integrated moving average (ARIMAX) and LSTM. It is observed that the proposed method outperforms other counterpart methods. Though PCA was not an integral part of the forecasting process, it facilitated the prediction by means of "less data, more accuracy." Originality/value A novel deep learning-based forecasting method is proposed to predict container throughput using a hybridized autoregressive integrated moving average with external factors model and long short-term memory network (ARIMAX-LSTM).
引用
收藏
页码:2100 / 2117
页数:18
相关论文
共 50 条
  • [21] Deep Learning-Based Forecasting of COVID-19 in India
    Pillai, Punitha Kumaresa
    Durairaj, Devaraj
    Samivel, Kanthammal
    JOURNAL OF TESTING AND EVALUATION, 2022, 50 (01) : 225 - 242
  • [22] A Hybrid Deep Learning-Based Power System State Forecasting
    Hadayeghparast, Shahrzad
    Jahromi, Amir Namavar
    Karimipour, Hadis
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 893 - 898
  • [23] Deep learning-based household electric energy consumption forecasting
    Hyeon, Jonghwan
    Lee, HyeYoung
    Ko, Bowon
    Choi, Ho-Jin
    JOURNAL OF ENGINEERING-JOE, 2020, 2020 (13): : 639 - 642
  • [24] Developing a deep learning-based storm surge forecasting model
    Xie, Wenhong
    Xu, Guangjun
    Zhang, Hongchun
    Dong, Changming
    OCEAN MODELLING, 2023, 182
  • [25] Deep learning-based forecasting modeling of micro gas turbine performance projection: An experimental approach
    Kilic, Ugur
    Villareal-Valderrama, Francisco
    Ayar, Murat
    Ekici, Selcuk
    Brooks, Luis Amezquita-
    Karakoc, T. Hikmet
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 130
  • [26] A Hybrid Deep Learning-Based Traffic Forecasting Approach Integrating Adjacency Filtering and Frequency Decomposition
    Cao, Jun
    Guan, Xuefeng
    Zhang, Na
    Wang, Xinglei
    Wu, Huayi
    IEEE ACCESS, 2020, 8 (08): : 81735 - 81746
  • [27] A Deep Learning-based approach for forecasting off-gas production and consumption in the blast furnace
    Stefano Dettori
    Ismael Matino
    Valentina Colla
    Ramon Speets
    Neural Computing and Applications, 2022, 34 : 911 - 923
  • [28] A Hybrid Deep Learning-Based Network for Photovoltaic Power Forecasting
    Hussain, Altaf
    Khan, Zulfiqar Ahmad
    Hussain, Tanveer
    Ullah, Fath U. Min
    Rho, Seungmin
    Baik, Sung Wook
    COMPLEXITY, 2022, 2022
  • [29] FORECASTING AIRCRAFT MILES FLOWN TIME SERIES USING A DEEP LEARNING-BASED HYBRID APPROACH
    Sineglazov, Victor
    Chumachenko, Olena
    Gorbatiuk, Vladyslav
    AVIATION, 2018, 22 (01) : 6 - 12
  • [30] A Secure Federated Deep Learning-Based Approach for Heating Load Demand Forecasting in Building Environment
    Moradzadeh, Arash
    Moayyed, Hamed
    Mohammadi-Ivatloo, Behnam
    Aguiar, A. Pedro
    Anvari-Moghaddam, Amjad
    IEEE ACCESS, 2022, 10 : 5037 - 5050