Deep learning-based container throughput forecasting: a triple bottom line approach

被引:15
|
作者
Shankar, Sonali [1 ]
Punia, Sushil [2 ]
Ilavarasan, P. Vigneswara [1 ]
机构
[1] Indian Inst Technol Delhi, New Delhi, India
[2] FORE Sch Management, New Delhi, India
关键词
Principal component analysis; Triple bottom line; Container throughput; Forecasting; Machine learning; LSTM; SHORT-TERM-MEMORY; NEURAL-NETWORK; MODEL SELECTION; LE HAVRE; PORT; ARIMA; PERFORMANCE; RANGE;
D O I
10.1108/IMDS-12-2020-0704
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Purpose Container throughput forecasting plays a pivotal role in strategic, tactical and operational level decision-making. The determination and analysis of the influencing factors of container throughput are observed to enhance the predicting accuracy. Therefore, for effective port planning and management, this study employs a deep learning-based method to forecast the container throughput while considering the influence of economic, environmental and social factors on throughput forecasting. Design/methodology/approach A novel multivariate container throughput forecasting method is proposed using long short-term memory network (LSTM). The external factors influencing container throughput, delineated using triple bottom line, are considered as an input to the forecasting method. The principal component analysis (PCA) is employed to reduce the redundancy of the input variables. The container throughput data of the Port of Los Angeles (PLA) is considered for empirical analysis. The forecasting accuracy of the proposed method is measured via an error matrix. The accuracy of the results is further substantiated by the Diebold-Mariano statistical test. Findings The result of the proposed method is benchmarked with vector autoregression (VAR), autoregressive integrated moving average (ARIMAX) and LSTM. It is observed that the proposed method outperforms other counterpart methods. Though PCA was not an integral part of the forecasting process, it facilitated the prediction by means of "less data, more accuracy." Originality/value A novel deep learning-based forecasting method is proposed to predict container throughput using a hybridized autoregressive integrated moving average with external factors model and long short-term memory network (ARIMAX-LSTM).
引用
收藏
页码:2100 / 2117
页数:18
相关论文
共 50 条
  • [1] A deep learning-based multivariate decomposition and ensemble framework for container throughput forecasting
    Kulshrestha, Anurag
    Yadav, Abhishek
    Sharma, Himanshu
    Suman, Shikha
    JOURNAL OF FORECASTING, 2024, 43 (07) : 2685 - 2704
  • [2] Deep learning-based approach for forecasting intermittent online sales
    Ahmadov Y.
    Helo P.
    Discover Artificial Intelligence, 2023, 3 (01):
  • [3] Deep learning-based cyber resilient dynamic line rating forecasting*
    Moradzadeh, Arash
    Mohammadpourfard, Mostafa
    Genc, Istemihan
    Seker, Sahin Serhat
    Mohammadi-Ivatloo, Behnam
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 142
  • [4] A Deep Learning-Based Approach for High-Throughput Hypocotyl Phenotyping
    Dobos, Orsolya
    Horvath, Peter
    Nagy, Ferenc
    Danka, Tivadar
    Viczian, Andras
    PLANT PHYSIOLOGY, 2019, 181 (04) : 1415 - 1424
  • [5] An innovative deep learning-based approach for significant wave height forecasting
    Bekiryazici, Sule
    Amarouche, Khalid
    Ozcan, Neyir
    Akpinar, Adem
    OCEAN ENGINEERING, 2025, 323
  • [6] Deep learning-based time series forecasting
    Song, Xiaobao
    Deng, Liwei
    Wang, Hao
    Zhang, Yaoan
    He, Yuxin
    Cao, Wenming
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 58 (01)
  • [7] Deep learning-based ionospheric TEC forecasting
    Demiryege, Ismail
    Ulukavak, Mustafa
    GEOMATIK, 2022, 7 (02): : 80 - 87
  • [8] Deep learning-based forecasting of electricity consumption
    Momina Qureshi
    Masood Ahmad Arbab
    Sadaqat ur Rehman
    Scientific Reports, 14
  • [9] Deep learning-based forecasting of electricity consumption
    Qureshi, Momina
    Arbab, Masood Ahmad
    Rehman, Sadaqat ur
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [10] A Deep Learning-Based Customer Forecasting Tool
    Kuo-Yi Lin
    Jeffrey, J. P. Tsai
    2016 IEEE SECOND INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2016, : 198 - 205