Land use effects on gross soil nitrogen transformations in karst desertification area

被引:16
|
作者
Yang, Hui [1 ,2 ]
Garousi, Farzaneh [1 ,2 ]
Wang, Jun [3 ]
Cao, Jianhua [1 ,2 ]
Xu, Xingliang [4 ]
Zhu, Tongbin [1 ,2 ]
Mueller, Christoph [5 ,6 ,7 ]
机构
[1] CAGS, Inst Karst Geol, Karst Dynam Lab, Mlr Guangxi 541004, Guilin, Peoples R China
[2] Int Res Ctr Karst, Auspices UNESCO, Guilin 541004, Peoples R China
[3] Baise Univ, Guangxi Baise 533000, Baise, Peoples R China
[4] Chinese Acad Sci, Inst Geog Sci & Nat Resources, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China
[5] Justus Liebig Univ Giessen, Inst Plant Ecol, Heinrich Buff Ring 26, D-35392 Giessen, Germany
[6] Univ Coll Dublin, Sch Biol & Environm Sci, Dublin 4, Ireland
[7] Univ Coll Dublin, Earth Inst, Dublin 4, Ireland
基金
中国国家自然科学基金;
关键词
Karst rocky desertification; Land use; (15) N-tracer; Gross N transformation; Inorganic N supply; AMMONIA-OXIDIZING ARCHAEA; ORGANIC-MATTER; HETEROTROPHIC NITRIFICATION; TERRESTRIAL ECOSYSTEMS; RETENTION CAPACITY; CALCAREOUS SOIL; FOREST SOILS; INORGANIC N; MINERALIZATION; CARBON;
D O I
10.1007/s11104-021-05021-9
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Purpose Investigating soil nitrogen (N) cycling to evaluate inorganic N supply can guide land resource utilization. In this study, four typical land uses including grassland, Eucalyptus, corn, and pitaya plantations were chosen in a karst desertification area, all of which are the main plants in the local area. The corn and pitaya plantations experienced greater human disturbance than the grassland and Eucalyptus plantations; the latter two were not fertilized and tilled. We explored how land use change affects the gross N transformation rates and inorganic N supply in karst soils. Methods Soils were sampled from four land uses, and a (15) N-tracer incubation experiment containing two (15) N treatments ((NH4NO3)-N-15 and (NH4NO3)-N-15 at 10 atom% (15) N excess) was conducted at 25 degrees C under 60% water-holding capacity. Gross N transformation rates in the soils were qualified by a N cycle model (Muller et al., Soil Biol Biochem 39:715-726, 2007). Results Compared to grassland, pitaya cultivation did not affect heterotrophic nitrification (O-Norg) but increased the rates of the mineralization of organic N to NH4+ (M-Norg), NH4+ oxidation to NO3- (O-NH4), and microbial NO3- immobilization (I-NO3), resulting in increased inorganic N supply and turnover. By contrast, corn cultivation lowered the inorganic N supply by inhibiting M-Norg and O-NH4 rates, while increasing O-Norg. Compared to corn and pitaya plantations, the Eucalyptus plantation further lowered the inorganic N supply by inhibiting O-NH4 rates while increasing the rates of I-NH4 and NH4+ adsorption on cation-exchange sites. Lower clay content, alkyl-C, aromatic-C, alkyl-C/O-alkyl-C, and aromaticity levels but higher O-alkyl-C and carbonyl-C levels were found in the grassland and pitaya soils than the Eucalyptus and corn soils, indicating the clayey texture and low labile organic matter in the latter two soils. The rates of M-Norg, O-NH4, and I-NO3 were significantly negatively related to the soil clay content, alkyl-C/O-alkyl-C and aromaticity, suggesting that soil texture and the stability of organic matter were the important factors affecting inorganic N supply. Conclusions These results highlight the significant effect of land uses on N transformation rates. Compared to natural grassland, cash crop plantations such as pitaya can increase inorganic N supply capacity, while Eucalyptus and corn plantations reduce it, in karst rocky desertification areas. Our results indicate that the application of active organic fertilizer to agricultural plantations may be an effective practice for increasing labile organic C and improving the soil structure to accelerate N cycling and inorganic N supply.
引用
下载
收藏
页码:61 / 77
页数:17
相关论文
共 50 条
  • [41] Background nitrogen deposition controls the effects of experimental nitrogen addition on soil gross N transformations in forest ecosystems
    Yi Cheng
    Jing Wang
    Zhiwei Ge
    Jinbo Zhang
    Yanjiang Cai
    Scott X. Chang
    Zucong Cai
    Han Y. H. Chen
    Biogeochemistry, 2020, 151 : 335 - 341
  • [42] Changes in Land Use and their Effects on Soil Properties in Huixian Karst Wetland System
    Li, Zhongyi
    Jin, Zhenjiang
    Li, Qiang
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2017, 26 (02): : 699 - 707
  • [43] Effects of Different Land Use Types and Soil Depths on Soil Mineral Elements, Soil Enzyme Activity, and Fungal Community in Karst Area of Southwest China
    Gong, Jiyi
    Hou, Wenpeng
    Liu, Jie
    Malik, Kamran
    Kong, Xin
    Wang, Li
    Chen, Xianlei
    Tang, Ming
    Zhu, Ruiqing
    Cheng, Chen
    Liu, Yinglong
    Wang, Jianfeng
    Yi, Yin
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (05)
  • [44] Contribution of Litter and Root to Soil Nutrients in Different Rocky Desertification Grasslands in a Karst Area
    Wang, Yuefeng
    Wang, Jigao
    Wang, Yini
    Wang, Xiaojing
    Jin, Baocheng
    Chen, Chao
    Zhao, Xuechun
    PLANTS-BASEL, 2024, 13 (16):
  • [45] Effect of land use on soil enzyme activities at karst area in Nanchuan, Chongqing, Southwest China
    Li, Q.
    Liang, J. H.
    He, Y. Y.
    Hu, Q. J.
    Yu, S.
    PLANT SOIL AND ENVIRONMENT, 2014, 60 (01) : 15 - 20
  • [46] Effects of desertification process on plant-soil carbon and nitrogen pools in the semiarid Horqin Sandy Land
    Li, Y. Q.
    Zhao, H. L.
    Zhao, X. Y.
    Zhang, T. H.
    Zuo, X. A.
    Liu, X. P.
    2008 PROCEEDINGS OF INFORMATION TECHNOLOGY AND ENVIRONMENTAL SYSTEM SCIENCES: ITESS 2008, VOL 4, 2008, : 454 - 457
  • [47] The Influence of Tree Species, Nitrogen Fertilization, and Soil C to N ratio on Gross Soil Nitrogen Transformations
    Christenson, L. M.
    Lovett, G. M.
    Weathers, K. C.
    Arthur, M. A.
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2009, 73 (02) : 638 - 646
  • [48] Effects of land use change on soil carbon and nitrogen in purple paddy soil
    Li, Xiu-Zhi
    Han, Bang-Shuai
    Yang, Fan
    Hu, Cong-Yue
    Han, Guang-Zhong
    Huang, Lai-Ming
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 314
  • [49] Nitrogen deposition differentially affects soil gross nitrogen transformations in organic and mineral horizons
    Cheng, Yi
    Wang, Jing
    Wang, Jinyang
    Wang, Shenqiang
    Chang, Scott X.
    Cai, Zucong
    Zhang, Jinbo
    Niu, Shuli
    Hu, Shuijin
    EARTH-SCIENCE REVIEWS, 2020, 201
  • [50] Impact of nitrogen and phosphorus additions on soil gross nitrogen transformations in a temperate desert steppe
    Yue, Ping
    Zhang, Jinbo
    Zhu, Gaodi
    Yin, Xiaoyue
    Zhang, Xiaoxue
    Wang, Shaokun
    Mueller, Christoph
    Misselbrook, Tom
    Zuo, Xiaoan
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2023, 74 (05)