Generative Adversarial Networks with Joint Distribution Moment Matching

被引:2
|
作者
Zhang, Yi-Ying [1 ]
Shen, Chao-Min [1 ,2 ,3 ]
Feng, Hao [4 ]
Fletcher, Preston Thomas [5 ]
Zhang, Gui-Xu [1 ]
机构
[1] East China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab Multidimens Informat Proc, Shanghai 200062, Peoples R China
[3] Westlake Inst Brain Sci & Technol, Hangzhou 310027, Zhejiang, Peoples R China
[4] Didi Chuxing Sci & Technol Co Ltd, Beijing 100193, Peoples R China
[5] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA
基金
中国国家自然科学基金;
关键词
Generative Adversarial Networks; Joint Distribution Moment Matching; Maximum mean discrepancy;
D O I
10.1007/s40305-019-00248-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Generative adversarial networks (GANs) have shown impressive power in the field of machine learning. Traditional GANs have focused on unsupervised learning tasks. In recent years, conditional GANs that can generate data with labels have been proposed in semi-supervised learning and have achieved better image quality than traditional GANs. Conditional GANs, however, generally only minimize the difference between marginal distributions of real and generated data, neglecting the difference with respect to each class of the data. To address this challenge, we propose the GAN with joint distribution moment matching (JDMM-GAN) for matching the joint distribution based on maximum mean discrepancy, which minimizes the differences of both the marginal and conditional distributions. The learning procedure is iteratively conducted by the stochastic gradient descent and back-propagation. We evaluate JDMM-GAN on several benchmark datasets, including MNIST, CIFAR-10 and the Extended Yale Face. Compared with the state-of-the-art GANs, JDMM-GAN generates more realistic images and achieves the best inception score for CIFAR-10 dataset.
引用
收藏
页码:579 / 597
页数:19
相关论文
共 50 条
  • [41] Generative Adversarial Networks in Cardiology
    Skandarani, Youssef
    Lalande, Alain
    Afilalo, Jonathan
    Jodoin, Pierre-Marc
    CANADIAN JOURNAL OF CARDIOLOGY, 2022, 38 (02) : 196 - 203
  • [42] A Review: Generative Adversarial Networks
    Gonog, Liang
    Zhou, Yimin
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 505 - 510
  • [43] Optoelectronic generative adversarial networks
    Jumin Qiu
    Ganqing Lu
    Tingting Liu
    Dejian Zhang
    Shuyuan Xiao
    Tianbao Yu
    Communications Physics, 8 (1)
  • [44] A Review on Generative Adversarial Networks
    De Silva, Dilum Maduranga
    Poravi, Guhanathan
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [45] Slimmable Generative Adversarial Networks
    Hou, Liang
    Yuan, Zehuan
    Huang, Lei
    Shen, Huawei
    Cheng, Xueqi
    Wang, Changhu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7746 - 7753
  • [46] Generative Adversarial Networks Quantization
    Mitrofanov, E.
    Grishkin, V.
    PHYSICS OF PARTICLES AND NUCLEI, 2024, 55 (03) : 563 - 565
  • [47] Coupled Generative Adversarial Networks
    Liu, Ming-Yu
    Tuzel, Oncel
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [48] Generative Adversarial Networks An overview
    Creswell, Antonia
    White, Tom
    Dumoulin, Vincent
    Arulkumaran, Kai
    Sengupta, Biswa
    Bharath, Anil A.
    IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) : 53 - 65
  • [49] Deconstructing Generative Adversarial Networks
    Zhu, Banghua
    Jiao, Jiantao
    Tse, David
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 7155 - 7179
  • [50] Generative Adversarial Networks for Classification
    Israel, Steven A.
    Goldstein, J. H.
    Klein, Jeffrey S.
    Talamonti, James
    Tanner, Franklin
    Zabel, Shane
    Sallee, Philip A.
    McCoy, Lisa
    2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,