3D CNN for Human Action Recognition

被引:4
|
作者
Boualia, Sameh Neili [1 ,2 ]
Ben Amara, Najoua Essoukri [2 ]
机构
[1] Univ Tunis El Manar, Natl Engn Sch Tunis, Tunis 1002, Tunisia
[2] Univ Sousse, Ecole Natl Ingn Sousse, LATIS Lab Adv Technol & Intelligent Syst, Sousse 4023, Tunisia
关键词
Human Action Recognition; Deep Learning; 3D CNN;
D O I
10.1109/SSD52085.2021.9429429
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recognizing different human actions from still images or videos is an important research area in the computer vision and artificial intelligence domains. It represents a key step for a wide range of applications including: human-computer interaction, ambient assisted living, intelligent driving and video surveillance. However, unless the many research works being involved, there are still many challenges ahead including: the high changes in human body shapes, clothing and viewpoint changes and the conditions of system acquisition (illumination variations, occlusions, etc). With the emergence of new deep learning techniques, many approaches are recently proposed for Human Action Recognition (HAR). Compared with conventional machine learning methods, deep learning techniques have more powerful learning ability. The most wide-spread deep learning approach is the Convolutional Neural Network (CNN/ConvNets). It has shown remarkable achievements due to its precision and robustness. As a branch of neural network, 3D CNN is a relatively new technique in the field of deep learning. In this paper, we propose a HAR approach based on a 3D CNN modet We apply the developed model to recognize human actions of KTH and J-HMDB datasets, and we achieve state of the art performance in comparison to baseline methods.
引用
收藏
页码:276 / 282
页数:7
相关论文
共 50 条
  • [21] On the Benefits of 3D Pose and Tracking for Human Action Recognition
    Rajasegaran, Jathushan
    Pavlakos, Georgios
    Kanazawa, Angjoo
    Feichtenhofer, Christoph
    Malik, Jitendra
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 640 - 649
  • [22] 3D CNNs on Distance Matrices for Human Action Recognition
    Hernandez Ruiz, Alejandro
    Porzi, Lorenzo
    Bulo, Samuel Rota
    Moreno-Noguer, Francesc
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1087 - 1095
  • [23] 3D Convolutional Neural Networks for Human Action Recognition
    Ji, Shuiwang
    Xu, Wei
    Yang, Ming
    Yu, Kai
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (01) : 221 - 231
  • [24] 3D Human Action Recognition Using Model Segmentation
    Yoon, Sang Min
    Kuijper, Arjan
    IMAGE ANALYSIS AND RECOGNITION, PT I, PROCEEDINGS, 2010, 6111 : 189 - +
  • [25] Learning Actionlet Ensemble for 3D Human Action Recognition
    Wang, Jiang
    Liu, Zicheng
    Wu, Ying
    Yuan, Junsong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (05) : 914 - 927
  • [26] Human Action Recognition with 3D Convolutional Neural Network
    Lima, Tiago
    Fernandes, Bruno
    Barros, Pablo
    2017 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2017,
  • [27] Human Action Recognition Using 3D Zernike Moments
    Arik, Okay
    Bingol, A. Semih
    2014 11TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2014,
  • [28] Discriminative parts learning for 3D human action recognition
    Huang, Min
    Cai, Guo-Rong
    Zhang, Hong-Bo
    Yu, Sheng
    Gong, Dong-Ying
    Cao, Dong-Lin
    Li, Shaozi
    Su, Song-Zhi
    NEUROCOMPUTING, 2018, 291 : 84 - 96
  • [29] Attribute Mining for Scalable 3D Human Action Recognition
    Cai, Xingyang
    Zhou, Wengang
    Li, Houqiang
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 1075 - 1078
  • [30] A New Feature Descriptor for 3D Human Action Recognition
    Asadi-Aghbolaghi, Maryam
    Ramezanpour, Sadegh
    Kasaei, Shohreh
    2014 22ND IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2014, : 1157 - 1161