Bounded functions in Mobius invariant Dirichlet spaces

被引:55
|
作者
Nicolau, A
Xiao, J
机构
[1] UNIV AUTONOMA BARCELONA,DEPT MATEMAT,BELLATERRA 08193,SPAIN
[2] BEIJING UNIV,BEIJING 100871,PEOPLES R CHINA
关键词
D O I
10.1006/jfan.1997.3114
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For p is an element of (0, 1), let Q(p)(Q(p, 0)) be the space of analytic functions f on the unit disk Delta with sup(w is an element of Delta)\\f degrees phi(w)\\D-p < infinity (lim (\w\ --> 1)\\f degrees phi(w)\\D-p = 0), where \\.\\(Dp) means the weighted Dirichlet norm and phi(w) is the Mobius map of Delta onto itself wit phi(w)(0) = w. In this paper, we prove the Corona theorem for the algebra Q(p) boolean AND H-infinity (Q(p, 0) boolean AND H-infinity); then we provide a Fefferman-Stein type decomposition for Q(p)(Q(p, 0)), and finally we describe the interpolating sequences for Q(p) boolean AND H-infinity(Q(p, 0) boolean AND H-infinity). (C) 1997 Academic Press.
引用
收藏
页码:383 / 425
页数:43
相关论文
共 50 条